Ardupilot2/libraries/AP_HAL_PX4/Scheduler.cpp
2018-10-09 10:08:52 +11:00

449 lines
12 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include "AP_HAL_PX4.h"
#include "Scheduler.h"
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <errno.h>
#include <stdio.h>
#include <drivers/drv_hrt.h>
#include <nuttx/arch.h>
#include <systemlib/systemlib.h>
#include <pthread.h>
#include <poll.h>
#include "UARTDriver.h"
#include "AnalogIn.h"
#include "Storage.h"
#include "RCOutput.h"
#include "RCInput.h"
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
using namespace PX4;
extern const AP_HAL::HAL& hal;
extern bool _px4_thread_should_exit;
PX4Scheduler::PX4Scheduler() :
_perf_timers(perf_alloc(PC_ELAPSED, "APM_timers")),
_perf_io_timers(perf_alloc(PC_ELAPSED, "APM_IO_timers")),
_perf_storage_timer(perf_alloc(PC_ELAPSED, "APM_storage_timers")),
_perf_delay(perf_alloc(PC_ELAPSED, "APM_delay"))
{}
void PX4Scheduler::init()
{
_main_task_pid = getpid();
// setup the timer thread - this will call tasks at 1kHz
pthread_attr_t thread_attr;
struct sched_param param;
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_TIMER_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_timer_thread_ctx, &thread_attr, &PX4Scheduler::_timer_thread, this);
// the UART thread runs at a medium priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_UART_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_uart_thread_ctx, &thread_attr, &PX4Scheduler::_uart_thread, this);
// the IO thread runs at lower priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_IO_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_io_thread_ctx, &thread_attr, &PX4Scheduler::_io_thread, this);
// the storage thread runs at just above IO priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 1024);
param.sched_priority = APM_STORAGE_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_storage_thread_ctx, &thread_attr, &PX4Scheduler::_storage_thread, this);
}
/**
delay for a specified number of microseconds using a semaphore wait
*/
void PX4Scheduler::delay_microseconds_semaphore(uint16_t usec)
{
sem_t wait_semaphore;
struct hrt_call wait_call;
sem_init(&wait_semaphore, 0, 0);
memset(&wait_call, 0, sizeof(wait_call));
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post, &wait_semaphore);
sem_wait(&wait_semaphore);
}
void PX4Scheduler::delay_microseconds(uint16_t usec)
{
perf_begin(_perf_delay);
delay_microseconds_semaphore(usec);
perf_end(_perf_delay);
}
/*
wrapper around sem_post that boosts main thread priority
*/
static void sem_post_boost(sem_t *sem)
{
hal_px4_set_priority(APM_MAIN_PRIORITY_BOOST);
sem_post(sem);
}
/*
return the main thread to normal priority
*/
static void set_normal_priority(void *sem)
{
hal_px4_set_priority(APM_MAIN_PRIORITY);
}
/*
a variant of delay_microseconds that boosts priority to
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC
microseconds when the time completes. This significantly improves
the regularity of timing of the main loop as it takes
*/
void PX4Scheduler::delay_microseconds_boost(uint16_t usec)
{
sem_t wait_semaphore;
static struct hrt_call wait_call;
sem_init(&wait_semaphore, 0, 0);
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post_boost, &wait_semaphore);
sem_wait(&wait_semaphore);
hrt_call_after(&wait_call, APM_MAIN_PRIORITY_BOOST_USEC, (hrt_callout)set_normal_priority, nullptr);
}
void PX4Scheduler::delay(uint16_t ms)
{
perf_begin(_perf_delay);
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms &&
!_px4_thread_should_exit) {
delay_microseconds_semaphore(1000);
if (in_main_thread() && _min_delay_cb_ms <= ms) {
call_delay_cb();
}
}
perf_end(_perf_delay);
if (_px4_thread_should_exit) {
exit(1);
}
}
void PX4Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void PX4Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < PX4_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void PX4Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void PX4Scheduler::reboot(bool hold_in_bootloader)
{
// disarm motors to ensure they are off during a bootloader upload
hal.rcout->force_safety_on();
hal.rcout->force_safety_no_wait();
// delay to ensure the async force_saftey operation completes
delay(500);
px4_systemreset(hold_in_bootloader);
}
void PX4Scheduler::_run_timers()
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
// process analog input
((PX4AnalogIn *)hal.analogin)->_timer_tick();
_in_timer_proc = false;
}
extern bool px4_ran_overtime;
void *PX4Scheduler::_timer_thread(void *arg)
{
PX4Scheduler *sched = (PX4Scheduler *)arg;
uint32_t last_ran_overtime = 0;
pthread_setname_np(pthread_self(), "apm_timer");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_px4_thread_should_exit) {
sched->delay_microseconds_semaphore(1000);
// run registered timers
perf_begin(sched->_perf_timers);
sched->_run_timers();
perf_end(sched->_perf_timers);
// process any pending RC output requests
hal.rcout->timer_tick();
// process any pending RC input requests
((PX4RCInput *)hal.rcin)->_timer_tick();
if (px4_ran_overtime && AP_HAL::millis() - last_ran_overtime > 2000) {
last_ran_overtime = AP_HAL::millis();
#if 0
printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
#endif
}
}
return nullptr;
}
void PX4Scheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_in_io_proc = false;
}
void *PX4Scheduler::_uart_thread(void *arg)
{
PX4Scheduler *sched = (PX4Scheduler *)arg;
pthread_setname_np(pthread_self(), "apm_uart");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_px4_thread_should_exit) {
sched->delay_microseconds_semaphore(1000);
// process any pending serial bytes
hal.uartA->_timer_tick();
hal.uartB->_timer_tick();
hal.uartC->_timer_tick();
hal.uartD->_timer_tick();
hal.uartE->_timer_tick();
hal.uartF->_timer_tick();
}
return nullptr;
}
void *PX4Scheduler::_io_thread(void *arg)
{
PX4Scheduler *sched = (PX4Scheduler *)arg;
pthread_setname_np(pthread_self(), "apm_io");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_px4_thread_should_exit) {
sched->delay_microseconds_semaphore(1000);
// run registered IO processes
perf_begin(sched->_perf_io_timers);
sched->_run_io();
perf_end(sched->_perf_io_timers);
}
return nullptr;
}
void *PX4Scheduler::_storage_thread(void *arg)
{
PX4Scheduler *sched = (PX4Scheduler *)arg;
pthread_setname_np(pthread_self(), "apm_storage");
while (!sched->_hal_initialized) {
poll(nullptr, 0, 1);
}
while (!_px4_thread_should_exit) {
sched->delay_microseconds_semaphore(10000);
// process any pending storage writes
perf_begin(sched->_perf_storage_timer);
hal.storage->_timer_tick();
perf_end(sched->_perf_storage_timer);
}
return nullptr;
}
bool PX4Scheduler::in_main_thread() const
{
return getpid() == _main_task_pid;
}
void PX4Scheduler::system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called"
"more than once");
}
_initialized = true;
}
/*
disable interrupts and return a context that can be used to
restore the interrupt state. This can be used to protect
critical regions
*/
void *PX4Scheduler::disable_interrupts_save(void)
{
return (void *)(uintptr_t)irqsave();
}
/*
restore interrupt state from disable_interrupts_save()
*/
void PX4Scheduler::restore_interrupts(void *state)
{
irqrestore((irqstate_t)(uintptr_t)state);
}
/*
trampoline for thread create
*/
void *PX4Scheduler::thread_create_trampoline(void *ctx)
{
AP_HAL::MemberProc *t = (AP_HAL::MemberProc *)ctx;
(*t)();
free(t);
return nullptr;
}
/*
create a new thread
*/
bool PX4Scheduler::thread_create(AP_HAL::MemberProc proc, const char *name, uint32_t stack_size, priority_base base, int8_t priority)
{
// take a copy of the MemberProc, it is freed after thread exits
AP_HAL::MemberProc *tproc = (AP_HAL::MemberProc *)malloc(sizeof(proc));
if (!tproc) {
return false;
}
*tproc = proc;
uint8_t thread_priority = APM_IO_PRIORITY;
static const struct {
priority_base base;
uint8_t p;
} priority_map[] = {
{ PRIORITY_BOOST, APM_MAIN_PRIORITY_BOOST},
{ PRIORITY_MAIN, APM_MAIN_PRIORITY},
{ PRIORITY_SPI, APM_SPI_PRIORITY},
{ PRIORITY_I2C, APM_I2C_PRIORITY},
{ PRIORITY_CAN, APM_CAN_PRIORITY},
{ PRIORITY_TIMER, APM_TIMER_PRIORITY},
{ PRIORITY_RCIN, APM_TIMER_PRIORITY},
{ PRIORITY_IO, APM_IO_PRIORITY},
{ PRIORITY_UART, APM_UART_PRIORITY},
{ PRIORITY_STORAGE, APM_STORAGE_PRIORITY},
{ PRIORITY_SCRIPTING, APM_SCRIPTING_PRIORITY},
};
for (uint8_t i=0; i<ARRAY_SIZE(priority_map); i++) {
if (priority_map[i].base == base) {
thread_priority = constrain_int16(priority_map[i].p + priority, 1, APM_MAX_PRIORITY);
break;
}
}
pthread_t thread;
pthread_attr_t thread_attr;
struct sched_param param;
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, stack_size);
param.sched_priority = thread_priority;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
if (pthread_create(&thread, &thread_attr, thread_create_trampoline, tproc) != 0) {
free(tproc);
return false;
}
pthread_setname_np(thread, name);
return true;
}
#endif