688 lines
26 KiB
C++
688 lines
26 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
#include <AP_HAL.h>
|
|
#include <AC_PosControl.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
const AP_Param::GroupInfo AC_PosControl::var_info[] PROGMEM = {
|
|
// @Param: THR_HOVER
|
|
// @DisplayName: Throttle Hover
|
|
// @Description: The autopilot's estimate of the throttle required to maintain a level hover. Calculated automatically from the pilot's throttle input while in stabilize mode
|
|
// @Range: 0 1000
|
|
// @Units: Percent*10
|
|
// @User: Advanced
|
|
AP_GROUPINFO("THR_HOVER", 0, AC_PosControl, _throttle_hover, POSCONTROL_THROTTLE_HOVER),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
|
|
// Default constructor.
|
|
// Note that the Vector/Matrix constructors already implicitly zero
|
|
// their values.
|
|
//
|
|
AC_PosControl::AC_PosControl(const AP_AHRS& ahrs, const AP_InertialNav& inav,
|
|
const AP_Motors& motors, AC_AttitudeControl& attitude_control,
|
|
AC_P& p_alt_pos, AC_P& p_alt_rate, AC_PID& pid_alt_accel,
|
|
AC_P& p_pos_xy, AC_PID& pid_rate_lat, AC_PID& pid_rate_lon) :
|
|
_ahrs(ahrs),
|
|
_inav(inav),
|
|
_motors(motors),
|
|
_attitude_control(attitude_control),
|
|
_p_alt_pos(p_alt_pos),
|
|
_p_alt_rate(p_alt_rate),
|
|
_pid_alt_accel(pid_alt_accel),
|
|
_p_pos_xy(p_pos_xy),
|
|
_pid_rate_lat(pid_rate_lat),
|
|
_pid_rate_lon(pid_rate_lon),
|
|
_dt(POSCONTROL_DT_10HZ),
|
|
_last_update_ms(0),
|
|
_last_update_rate_ms(0),
|
|
_last_update_accel_ms(0),
|
|
_step(0),
|
|
_speed_down_cms(POSCONTROL_SPEED_DOWN),
|
|
_speed_up_cms(POSCONTROL_SPEED_UP),
|
|
_speed_cms(POSCONTROL_SPEED),
|
|
_accel_z_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default
|
|
_accel_cms(POSCONTROL_ACCEL_XY_MAX), // To-Do: check this default
|
|
_leash(POSCONTROL_LEASH_LENGTH_MIN),
|
|
_roll_target(0.0),
|
|
_pitch_target(0.0),
|
|
_vel_target_filt_z(0),
|
|
_alt_max(0),
|
|
_distance_to_target(0),
|
|
_xy_step(0),
|
|
_dt_xy(0)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
// initialise flags
|
|
_flags.force_recalc_xy = false;
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
_flags.slow_cpu = false;
|
|
#else
|
|
_flags.slow_cpu = true;
|
|
#endif
|
|
_flags.recalc_leash_xy = true;
|
|
_flags.recalc_leash_z = true;
|
|
}
|
|
|
|
///
|
|
/// z-axis position controller
|
|
///
|
|
|
|
/// set_speed_z - sets maximum climb and descent rates
|
|
/// To-Do: call this in the main code as part of flight mode initialisation
|
|
/// calc_leash_length_z should be called afterwards
|
|
/// speed_down should be a negative number
|
|
void AC_PosControl::set_speed_z(float speed_down, float speed_up)
|
|
{
|
|
if ((fabs(_speed_down_cms-speed_down) > 1.0f) || (fabs(_speed_up_cms-speed_up) > 1.0f)) {
|
|
_speed_down_cms = speed_down;
|
|
_speed_up_cms = speed_up;
|
|
_flags.recalc_leash_z = true;
|
|
}
|
|
}
|
|
|
|
/// set_accel_z - set vertical acceleration in cm/s/s
|
|
void AC_PosControl::set_accel_z(float accel_cmss)
|
|
{
|
|
if (fabs(_accel_z_cms-accel_cmss) > 1.0f) {
|
|
_accel_z_cms = accel_cmss;
|
|
_flags.recalc_leash_z = true;
|
|
}
|
|
}
|
|
|
|
/// set_alt_target_with_slew - adjusts target towards a final altitude target
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
void AC_PosControl::set_alt_target_with_slew(float alt_cm, float dt)
|
|
{
|
|
float alt_change = alt_cm-_pos_target.z;
|
|
|
|
// adjust desired alt if motors have not hit their limits
|
|
if ((alt_change<0 && !_motors.limit.throttle_lower) || (alt_change>0 && !_motors.limit.throttle_upper)) {
|
|
_pos_target.z += constrain_float(alt_change, _speed_down_cms*dt, _speed_up_cms*dt);
|
|
}
|
|
|
|
// do not let target get too far from current altitude
|
|
float curr_alt = _inav.get_altitude();
|
|
_pos_target.z = constrain_float(_pos_target.z,curr_alt-_leash_down_z,curr_alt+_leash_up_z);
|
|
}
|
|
|
|
/// set_alt_target_from_climb_rate - adjusts target up or down using a climb rate in cm/s
|
|
/// should be called continuously (with dt set to be the expected time between calls)
|
|
/// actual position target will be moved no faster than the speed_down and speed_up
|
|
/// target will also be stopped if the motors hit their limits or leash length is exceeded
|
|
void AC_PosControl::set_alt_target_from_climb_rate(float climb_rate_cms, float dt)
|
|
{
|
|
// adjust desired alt if motors have not hit their limits
|
|
// To-Do: add check of _limit.pos_up and _limit.pos_down?
|
|
if ((climb_rate_cms<0 && !_motors.limit.throttle_lower) || (climb_rate_cms>0 && !_motors.limit.throttle_upper)) {
|
|
_pos_target.z += climb_rate_cms * _dt;
|
|
}
|
|
}
|
|
|
|
// get_alt_error - returns altitude error in cm
|
|
float AC_PosControl::get_alt_error() const
|
|
{
|
|
return (_pos_target.z - _inav.get_altitude());
|
|
}
|
|
|
|
/// set_target_to_stopping_point_z - returns reasonable stopping altitude in cm above home
|
|
void AC_PosControl::set_target_to_stopping_point_z()
|
|
{
|
|
get_stopping_point_z(_pos_target);
|
|
}
|
|
|
|
/// get_stopping_point_z - sets stopping_point.z to a reasonable stopping altitude in cm above home
|
|
void AC_PosControl::get_stopping_point_z(Vector3f& stopping_point) const
|
|
{
|
|
const float curr_pos_z = _inav.get_altitude();
|
|
const float curr_vel_z = _inav.get_velocity_z();
|
|
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt
|
|
float linear_velocity; // the velocity we swap between linear and sqrt
|
|
|
|
// calculate the velocity at which we switch from calculating the stopping point using a linear function to a sqrt function
|
|
linear_velocity = POSCONTROL_ALT_HOLD_ACCEL_MAX/_p_alt_pos.kP();
|
|
|
|
if (fabs(curr_vel_z) < linear_velocity) {
|
|
// if our current velocity is below the cross-over point we use a linear function
|
|
stopping_point.z = curr_pos_z + curr_vel_z/_p_alt_pos.kP();
|
|
} else {
|
|
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_p_alt_pos.kP()*_p_alt_pos.kP());
|
|
if (curr_vel_z > 0){
|
|
stopping_point.z = curr_pos_z + (linear_distance + curr_vel_z*curr_vel_z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX));
|
|
} else {
|
|
stopping_point.z = curr_pos_z - (linear_distance + curr_vel_z*curr_vel_z/(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX));
|
|
}
|
|
}
|
|
stopping_point.z = constrain_float(stopping_point.z, curr_pos_z - POSCONTROL_STOPPING_DIST_Z_MAX, curr_pos_z + POSCONTROL_STOPPING_DIST_Z_MAX);
|
|
}
|
|
|
|
/// init_takeoff - initialises target altitude if we are taking off
|
|
void AC_PosControl::init_takeoff()
|
|
{
|
|
const Vector3f& curr_pos = _inav.get_position();
|
|
|
|
_pos_target.z = curr_pos.z + POSCONTROL_TAKEOFF_JUMP_CM;
|
|
|
|
// clear i term from acceleration controller
|
|
if (_pid_alt_accel.get_integrator() < 0) {
|
|
_pid_alt_accel.reset_I();
|
|
}
|
|
}
|
|
|
|
/// update_z_controller - fly to altitude in cm above home
|
|
void AC_PosControl::update_z_controller()
|
|
{
|
|
// check if leash lengths need to be recalculated
|
|
calc_leash_length_z();
|
|
|
|
// call position controller
|
|
pos_to_rate_z();
|
|
}
|
|
|
|
/// calc_leash_length - calculates the vertical leash lengths from maximum speed, acceleration
|
|
/// called by pos_to_rate_z if z-axis speed or accelerations are changed
|
|
void AC_PosControl::calc_leash_length_z()
|
|
{
|
|
if (_flags.recalc_leash_z) {
|
|
_leash_up_z = calc_leash_length(_speed_up_cms, _accel_z_cms, _p_alt_pos.kP());
|
|
_leash_down_z = calc_leash_length(-_speed_down_cms, _accel_z_cms, _p_alt_pos.kP());
|
|
_flags.recalc_leash_z = false;
|
|
}
|
|
}
|
|
|
|
// pos_to_rate_z - position to rate controller for Z axis
|
|
// calculates desired rate in earth-frame z axis and passes to rate controller
|
|
// vel_up_max, vel_down_max should have already been set before calling this method
|
|
void AC_PosControl::pos_to_rate_z()
|
|
{
|
|
float curr_alt = _inav.get_altitude();
|
|
float linear_distance; // half the distance we swap between linear and sqrt and the distance we offset sqrt.
|
|
|
|
// clear position limit flags
|
|
_limit.pos_up = false;
|
|
_limit.pos_down = false;
|
|
|
|
// calculate altitude error
|
|
_pos_error.z = _pos_target.z - curr_alt;
|
|
|
|
// do not let target altitude get too far from current altitude
|
|
if (_pos_error.z > _leash_up_z) {
|
|
_pos_target.z = curr_alt + _leash_up_z;
|
|
_pos_error.z = _leash_up_z;
|
|
_limit.pos_up = true;
|
|
}
|
|
if (_pos_error.z < -_leash_down_z) {
|
|
_pos_target.z = curr_alt - _leash_down_z;
|
|
_pos_error.z = -_leash_down_z;
|
|
_limit.pos_down = true;
|
|
}
|
|
|
|
// do not let target alt get above limit
|
|
if (_alt_max > 0 && _pos_target.z > _alt_max) {
|
|
_pos_target.z = _alt_max;
|
|
_limit.pos_up = true;
|
|
}
|
|
|
|
// check kP to avoid division by zero
|
|
if (_p_alt_pos.kP() != 0) {
|
|
linear_distance = POSCONTROL_ALT_HOLD_ACCEL_MAX/(2.0f*_p_alt_pos.kP()*_p_alt_pos.kP());
|
|
if (_pos_error.z > 2*linear_distance ) {
|
|
_vel_target.z = safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(_pos_error.z-linear_distance));
|
|
}else if (_pos_error.z < -2.0f*linear_distance) {
|
|
_vel_target.z = -safe_sqrt(2.0f*POSCONTROL_ALT_HOLD_ACCEL_MAX*(-_pos_error.z-linear_distance));
|
|
}else{
|
|
_vel_target.z = _p_alt_pos.get_p(_pos_error.z);
|
|
}
|
|
}else{
|
|
_vel_target.z = 0;
|
|
}
|
|
|
|
// call rate based throttle controller which will update accel based throttle controller targets
|
|
rate_to_accel_z(_vel_target.z);
|
|
}
|
|
|
|
// rate_to_accel_z - calculates desired accel required to achieve the velocity target
|
|
// calculates desired acceleration and calls accel throttle controller
|
|
void AC_PosControl::rate_to_accel_z(float vel_target_z)
|
|
{
|
|
uint32_t now = hal.scheduler->millis();
|
|
const Vector3f& curr_vel = _inav.get_velocity();
|
|
float z_target_speed_delta; // The change in requested speed
|
|
float p; // used to capture pid values for logging
|
|
float desired_accel; // the target acceleration if the accel based throttle is enabled, otherwise the output to be sent to the motors
|
|
|
|
// check speed limits
|
|
// To-Do: check these speed limits here or in the pos->rate controller
|
|
_limit.vel_up = false;
|
|
_limit.vel_down = false;
|
|
if (_vel_target.z < _speed_down_cms) {
|
|
_vel_target.z = _speed_down_cms;
|
|
_limit.vel_down = true;
|
|
}
|
|
if (_vel_target.z > _speed_up_cms) {
|
|
_vel_target.z = _speed_up_cms;
|
|
_limit.vel_up = true;
|
|
}
|
|
|
|
// reset velocity error and filter if this controller has just been engaged
|
|
if (now - _last_update_rate_ms > 100 ) {
|
|
// Reset Filter
|
|
_vel_error.z = 0;
|
|
_vel_target_filt_z = vel_target_z;
|
|
desired_accel = 0;
|
|
} else {
|
|
// calculate rate error and filter with cut off frequency of 2 Hz
|
|
//To-Do: adjust constant below based on update rate
|
|
_vel_error.z = _vel_error.z + 0.20085f * ((vel_target_z - curr_vel.z) - _vel_error.z);
|
|
// feed forward acceleration based on change in the filtered desired speed.
|
|
z_target_speed_delta = 0.20085f * (vel_target_z - _vel_target_filt_z);
|
|
_vel_target_filt_z = _vel_target_filt_z + z_target_speed_delta;
|
|
desired_accel = z_target_speed_delta / _dt;
|
|
}
|
|
_last_update_rate_ms = now;
|
|
|
|
// calculate p
|
|
p = _p_alt_rate.kP() * _vel_error.z;
|
|
|
|
// consolidate and constrain target acceleration
|
|
desired_accel += p;
|
|
desired_accel = constrain_int32(desired_accel, -32000, 32000);
|
|
|
|
// To-Do: re-enable PID logging?
|
|
// TO-DO: ensure throttle cruise is updated some other way in the main code or attitude control
|
|
|
|
// set target for accel based throttle controller
|
|
accel_to_throttle(desired_accel);
|
|
}
|
|
|
|
// accel_to_throttle - alt hold's acceleration controller
|
|
// calculates a desired throttle which is sent directly to the motors
|
|
void AC_PosControl::accel_to_throttle(float accel_target_z)
|
|
{
|
|
uint32_t now = hal.scheduler->millis();
|
|
float z_accel_meas; // actual acceleration
|
|
int32_t p,i,d; // used to capture pid values for logging
|
|
|
|
// Calculate Earth Frame Z acceleration
|
|
z_accel_meas = -(_ahrs.get_accel_ef().z + GRAVITY_MSS) * 100.0f;
|
|
|
|
// reset target altitude if this controller has just been engaged
|
|
if (now - _last_update_accel_ms > 100) {
|
|
// Reset Filter
|
|
_accel_error.z = 0;
|
|
} else {
|
|
// calculate accel error and Filter with fc = 2 Hz
|
|
// To-Do: replace constant below with one that is adjusted for update rate
|
|
_accel_error.z = _accel_error.z + 0.11164f * (constrain_float(accel_target_z - z_accel_meas, -32000, 32000) - _accel_error.z);
|
|
}
|
|
_last_update_accel_ms = now;
|
|
|
|
// separately calculate p, i, d values for logging
|
|
p = _pid_alt_accel.get_p(_accel_error.z);
|
|
|
|
// get i term
|
|
i = _pid_alt_accel.get_integrator();
|
|
|
|
// update i term as long as we haven't breached the limits or the I term will certainly reduce
|
|
// To-Do: should this be replaced with limits check from attitude_controller?
|
|
if ((!_motors.limit.throttle_lower && !_motors.limit.throttle_upper) || (i>0&&_accel_error.z<0) || (i<0&&_accel_error.z>0)) {
|
|
i = _pid_alt_accel.get_i(_accel_error.z, _dt);
|
|
}
|
|
|
|
// get d term
|
|
d = _pid_alt_accel.get_d(_accel_error.z, _dt);
|
|
|
|
// To-Do: pull min/max throttle from motors
|
|
// To-Do: we had a contraint here but it's now removed, is this ok? with the motors library handle it ok?
|
|
_attitude_control.set_throttle_out((int16_t)p+i+d+_throttle_hover, true);
|
|
|
|
// to-do add back in PID logging?
|
|
}
|
|
|
|
///
|
|
/// position controller
|
|
///
|
|
|
|
/// set_accel_xy - set horizontal acceleration in cm/s/s
|
|
/// calc_leash_length_xy should be called afterwards
|
|
void AC_PosControl::set_accel_xy(float accel_cmss)
|
|
{
|
|
if (fabs(_accel_cms-accel_cmss) > 1.0f) {
|
|
_accel_cms = accel_cmss;
|
|
_flags.recalc_leash_xy = true;
|
|
}
|
|
}
|
|
|
|
/// set_speed_xy - set horizontal speed maximum in cm/s
|
|
/// calc_leash_length_xy should be called afterwards
|
|
void AC_PosControl::set_speed_xy(float speed_cms)
|
|
{
|
|
if (fabs(_speed_cms-speed_cms) > 1.0f) {
|
|
_speed_cms = speed_cms;
|
|
_flags.recalc_leash_xy = true;
|
|
}
|
|
}
|
|
|
|
/// set_pos_target in cm from home
|
|
void AC_PosControl::set_pos_target(const Vector3f& position)
|
|
{
|
|
_pos_target = position;
|
|
|
|
// initialise roll and pitch to current roll and pitch. This avoids a twitch between when the target is set and the pos controller is first run
|
|
// To-Do: this initialisation of roll and pitch targets needs to go somewhere between when pos-control is initialised and when it completes it's first cycle
|
|
//_roll_target = constrain_int32(_ahrs.roll_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
|
|
//_pitch_target = constrain_int32(_ahrs.pitch_sensor,-_attitude_control.lean_angle_max(),_attitude_control.lean_angle_max());
|
|
}
|
|
|
|
/// get_stopping_point_xy - calculates stopping point based on current position, velocity, vehicle acceleration
|
|
/// distance_max allows limiting distance to stopping point
|
|
/// results placed in stopping_position vector
|
|
/// set_accel_xy() should be called before this method to set vehicle acceleration
|
|
/// set_leash_length() should have been called before this method
|
|
void AC_PosControl::get_stopping_point_xy(Vector3f &stopping_point) const
|
|
{
|
|
Vector3f curr_pos = _inav.get_position();
|
|
Vector3f curr_vel = _inav.get_velocity();
|
|
float linear_distance; // the distance at which we swap from a linear to sqrt response
|
|
float linear_velocity; // the velocity above which we swap from a linear to sqrt response
|
|
float stopping_dist; // the distance within the vehicle can stop
|
|
float kP = _p_pos_xy.kP();
|
|
|
|
// calculate current velocity
|
|
float vel_total = pythagorous2(curr_vel.x, curr_vel.y);
|
|
|
|
// avoid divide by zero by using current position if the velocity is below 10cm/s, kP is very low or acceleration is zero
|
|
if (vel_total < 10.0f || kP <= 0.0f || _accel_cms <= 0.0f) {
|
|
stopping_point = curr_pos;
|
|
return;
|
|
}
|
|
|
|
// calculate point at which velocity switches from linear to sqrt
|
|
linear_velocity = _accel_cms/kP;
|
|
|
|
// calculate distance within which we can stop
|
|
if (vel_total < linear_velocity) {
|
|
stopping_dist = vel_total/kP;
|
|
} else {
|
|
linear_distance = _accel_cms/(2.0f*kP*kP);
|
|
stopping_dist = linear_distance + (vel_total*vel_total)/(2.0f*_accel_cms);
|
|
}
|
|
|
|
// constrain stopping distance
|
|
stopping_dist = constrain_float(stopping_dist, 0, _leash);
|
|
|
|
// convert the stopping distance into a stopping point using velocity vector
|
|
stopping_point.x = curr_pos.x + (stopping_dist * curr_vel.x / vel_total);
|
|
stopping_point.y = curr_pos.y + (stopping_dist * curr_vel.y / vel_total);
|
|
}
|
|
|
|
/// get_distance_to_target - get horizontal distance to loiter target in cm
|
|
float AC_PosControl::get_distance_to_target() const
|
|
{
|
|
return _distance_to_target;
|
|
}
|
|
|
|
/// update_xy_controller - run the horizontal position controller - should be called at 100hz or higher
|
|
void AC_PosControl::update_xy_controller(bool use_desired_velocity)
|
|
{
|
|
// catch if we've just been started
|
|
uint32_t now = hal.scheduler->millis();
|
|
if ((now - _last_update_ms) >= 1000) {
|
|
_last_update_ms = now;
|
|
reset_I_xy();
|
|
_xy_step = 0;
|
|
}
|
|
|
|
// check if xy leash needs to be recalculated
|
|
calc_leash_length_xy();
|
|
|
|
// reset step back to 0 if loiter or waypoint parents have triggered an update and we completed the last full cycle
|
|
if (_flags.force_recalc_xy && _xy_step > 3) {
|
|
_flags.force_recalc_xy = false;
|
|
_xy_step = 0;
|
|
}
|
|
|
|
// run loiter steps
|
|
switch (_xy_step) {
|
|
case 0:
|
|
// capture time since last iteration
|
|
_dt_xy = (now - _last_update_ms) / 1000.0f;
|
|
_last_update_ms = now;
|
|
|
|
// translate any adjustments from pilot to loiter target
|
|
desired_vel_to_pos(_dt_xy);
|
|
_xy_step++;
|
|
break;
|
|
case 1:
|
|
// run position controller's position error to desired velocity step
|
|
pos_to_rate_xy(use_desired_velocity,_dt_xy);
|
|
_xy_step++;
|
|
break;
|
|
case 2:
|
|
// run position controller's velocity to acceleration step
|
|
rate_to_accel_xy(_dt_xy);
|
|
_xy_step++;
|
|
break;
|
|
case 3:
|
|
// run position controller's acceleration to lean angle step
|
|
accel_to_lean_angles();
|
|
_xy_step++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
///
|
|
/// private methods
|
|
///
|
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration
|
|
/// should be called whenever the speed, acceleration or position kP is modified
|
|
void AC_PosControl::calc_leash_length_xy()
|
|
{
|
|
if (_flags.recalc_leash_xy) {
|
|
_leash = calc_leash_length(_speed_cms, _accel_cms, _p_pos_xy.kP());
|
|
_flags.recalc_leash_xy = false;
|
|
}
|
|
}
|
|
|
|
/// desired_vel_to_pos - move position target using desired velocities
|
|
void AC_PosControl::desired_vel_to_pos(float nav_dt)
|
|
{
|
|
Vector2f target_vel_adj;
|
|
float vel_desired_total;
|
|
|
|
// range check nav_dt
|
|
if( nav_dt < 0 ) {
|
|
return;
|
|
}
|
|
|
|
// constrain and scale the desired velocity
|
|
vel_desired_total = pythagorous2(_vel_desired.x, _vel_desired.y);
|
|
if (vel_desired_total > _speed_cms && vel_desired_total > 0.0f) {
|
|
_vel_desired.x = _speed_cms * _vel_desired.x/vel_desired_total;
|
|
_vel_desired.y = _speed_cms * _vel_desired.y/vel_desired_total;
|
|
}
|
|
|
|
// update target position
|
|
_pos_target.x += _vel_desired.x * nav_dt;
|
|
_pos_target.y += _vel_desired.y * nav_dt;
|
|
}
|
|
|
|
/// pos_to_rate_xy - horizontal position error to velocity controller
|
|
/// converts position (_pos_target) to target velocity (_vel_target)
|
|
/// when use_desired_rate is set to true:
|
|
/// desired velocity (_vel_desired) is combined into final target velocity and
|
|
/// velocity due to position error is reduce to a maximum of 1m/s
|
|
void AC_PosControl::pos_to_rate_xy(bool use_desired_rate, float dt)
|
|
{
|
|
Vector3f curr_pos = _inav.get_position();
|
|
float linear_distance; // the distance we swap between linear and sqrt velocity response
|
|
float kP = _p_pos_xy.kP();
|
|
|
|
// avoid divide by zero
|
|
if (kP <= 0.0f) {
|
|
_vel_target.x = 0.0;
|
|
_vel_target.y = 0.0;
|
|
}else{
|
|
// calculate distance error
|
|
_pos_error.x = _pos_target.x - curr_pos.x;
|
|
_pos_error.y = _pos_target.y - curr_pos.y;
|
|
|
|
// constrain target position to within reasonable distance of current location
|
|
_distance_to_target = pythagorous2(_pos_error.x, _pos_error.y);
|
|
if (_distance_to_target > _leash && _distance_to_target > 0.0f) {
|
|
_pos_target.x = curr_pos.x + _leash * _pos_error.x/_distance_to_target;
|
|
_pos_target.y = curr_pos.y + _leash * _pos_error.y/_distance_to_target;
|
|
// re-calculate distance error
|
|
_pos_error.x = _pos_target.x - curr_pos.x;
|
|
_pos_error.y = _pos_target.y - curr_pos.y;
|
|
_distance_to_target = _leash;
|
|
}
|
|
|
|
// calculate the distance at which we swap between linear and sqrt velocity response
|
|
linear_distance = _accel_cms/(2.0f*kP*kP);
|
|
|
|
if (_distance_to_target > 2.0f*linear_distance) {
|
|
// velocity response grows with the square root of the distance
|
|
float vel_sqrt = safe_sqrt(2.0f*_accel_cms*(_distance_to_target-linear_distance));
|
|
_vel_target.x = vel_sqrt * _pos_error.x/_distance_to_target;
|
|
_vel_target.y = vel_sqrt * _pos_error.y/_distance_to_target;
|
|
}else{
|
|
// velocity response grows linearly with the distance
|
|
_vel_target.x = _p_pos_xy.kP() * _pos_error.x;
|
|
_vel_target.y = _p_pos_xy.kP() * _pos_error.y;
|
|
}
|
|
|
|
// decide velocity limit due to position error
|
|
float vel_max_from_pos_error;
|
|
if (use_desired_rate) {
|
|
// if desired velocity (i.e. velocity feed forward) is being used we limit the maximum velocity correction due to position error to 2m/s
|
|
vel_max_from_pos_error = POSCONTROL_VEL_XY_MAX_FROM_POS_ERR;
|
|
}else{
|
|
// if desired velocity is not used, we allow position error to increase speed up to maximum speed
|
|
vel_max_from_pos_error = _speed_cms;
|
|
}
|
|
|
|
// scale velocity to stays within limits
|
|
float vel_total = pythagorous2(_vel_target.x, _vel_target.y);
|
|
if (vel_total > vel_max_from_pos_error) {
|
|
_vel_target.x = vel_max_from_pos_error * _vel_target.x/vel_total;
|
|
_vel_target.y = vel_max_from_pos_error * _vel_target.y/vel_total;
|
|
}
|
|
|
|
// add desired velocity (i.e. feed forward).
|
|
if (use_desired_rate) {
|
|
_vel_target.x += _vel_desired.x;
|
|
_vel_target.y += _vel_desired.y;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// rate_to_accel_xy - horizontal desired rate to desired acceleration
|
|
/// converts desired velocities in lat/lon directions to accelerations in lat/lon frame
|
|
void AC_PosControl::rate_to_accel_xy(float dt)
|
|
{
|
|
const Vector3f &vel_curr = _inav.get_velocity(); // current velocity in cm/s
|
|
float accel_total; // total acceleration in cm/s/s
|
|
|
|
// reset accel limit flag
|
|
_limit.accel_xy = false;
|
|
|
|
// reset last velocity if this controller has just been engaged or dt is zero
|
|
if (dt == 0.0) {
|
|
_accel_target.x = 0;
|
|
_accel_target.y = 0;
|
|
} else {
|
|
// feed forward desired acceleration calculation
|
|
_accel_target.x = (_vel_target.x - _vel_last.x)/dt;
|
|
_accel_target.y = (_vel_target.y - _vel_last.y)/dt;
|
|
}
|
|
|
|
// store this iteration's velocities for the next iteration
|
|
_vel_last.x = _vel_target.x;
|
|
_vel_last.y = _vel_target.y;
|
|
|
|
// calculate velocity error
|
|
_vel_error.x = _vel_target.x - vel_curr.x;
|
|
_vel_error.y = _vel_target.y - vel_curr.y;
|
|
|
|
// combine feed forward accel with PID output from velocity error
|
|
// To-Do: check accel limit flag before adding I term
|
|
_accel_target.x += _pid_rate_lat.get_pid(_vel_error.x, dt);
|
|
_accel_target.y += _pid_rate_lon.get_pid(_vel_error.y, dt);
|
|
|
|
// scale desired acceleration if it's beyond acceptable limit
|
|
// To-Do: move this check down to the accel_to_lean_angle method?
|
|
accel_total = pythagorous2(_accel_target.x, _accel_target.y);
|
|
if (accel_total > POSCONTROL_ACCEL_XY_MAX) {
|
|
_accel_target.x = POSCONTROL_ACCEL_XY_MAX * _accel_target.x/accel_total;
|
|
_accel_target.y = POSCONTROL_ACCEL_XY_MAX * _accel_target.y/accel_total;
|
|
_limit.accel_xy = true; // unused
|
|
}
|
|
}
|
|
|
|
/// accel_to_lean_angles - horizontal desired acceleration to lean angles
|
|
/// converts desired accelerations provided in lat/lon frame to roll/pitch angles
|
|
void AC_PosControl::accel_to_lean_angles()
|
|
{
|
|
float accel_right, accel_forward;
|
|
float lean_angle_max = _attitude_control.lean_angle_max();
|
|
|
|
// To-Do: add 1hz filter to accel_lat, accel_lon
|
|
|
|
// rotate accelerations into body forward-right frame
|
|
accel_forward = _accel_target.x*_ahrs.cos_yaw() + _accel_target.y*_ahrs.sin_yaw();
|
|
accel_right = -_accel_target.x*_ahrs.sin_yaw() + _accel_target.y*_ahrs.cos_yaw();
|
|
|
|
// update angle targets that will be passed to stabilize controller
|
|
_roll_target = constrain_float(fast_atan(accel_right*_ahrs.cos_pitch()/(GRAVITY_MSS * 100))*(18000/M_PI), -lean_angle_max, lean_angle_max);
|
|
_pitch_target = constrain_float(fast_atan(-accel_forward/(GRAVITY_MSS * 100))*(18000/M_PI),-lean_angle_max, lean_angle_max);
|
|
}
|
|
|
|
/// reset_I_xy - clears I terms from loiter PID controller
|
|
void AC_PosControl::reset_I_xy()
|
|
{
|
|
_pid_rate_lon.reset_I();
|
|
_pid_rate_lat.reset_I();
|
|
|
|
// set last velocity to current velocity
|
|
_vel_last = _inav.get_velocity();
|
|
}
|
|
|
|
/// calc_leash_length - calculates the horizontal leash length given a maximum speed, acceleration and position kP gain
|
|
float AC_PosControl::calc_leash_length(float speed_cms, float accel_cms, float kP) const
|
|
{
|
|
float leash_length;
|
|
|
|
// sanity check acceleration and avoid divide by zero
|
|
if (accel_cms <= 0.0f) {
|
|
accel_cms = POSCONTROL_ACCELERATION_MIN;
|
|
}
|
|
|
|
// avoid divide by zero
|
|
if (kP <= 0.0f) {
|
|
return POSCONTROL_LEASH_LENGTH_MIN;
|
|
}
|
|
|
|
// calculate leash length
|
|
if(speed_cms <= accel_cms / kP) {
|
|
// linear leash length based on speed close in
|
|
leash_length = speed_cms / kP;
|
|
}else{
|
|
// leash length grows at sqrt of speed further out
|
|
leash_length = (accel_cms / (2.0f*kP*kP)) + (speed_cms*speed_cms / (2.0f*accel_cms));
|
|
}
|
|
|
|
// ensure leash is at least 1m long
|
|
if( leash_length < POSCONTROL_LEASH_LENGTH_MIN ) {
|
|
leash_length = POSCONTROL_LEASH_LENGTH_MIN;
|
|
}
|
|
|
|
return leash_length;
|
|
}
|