11e896b64c
git-svn-id: https://arducopter.googlecode.com/svn/trunk@398 f9c3cf11-9bcb-44bc-f272-b75c42450872
473 lines
13 KiB
C++
473 lines
13 KiB
C++
#include "DCM.h"
|
|
|
|
// XXX HACKS
|
|
APM_ADC adc;
|
|
|
|
// XXX END HACKS
|
|
|
|
|
|
#define GRAVITY 418 //this equivalent to 1G in the raw data coming from the accelerometer
|
|
#define ADC_CONSTRAINT 900
|
|
|
|
#define Kp_ROLLPITCH 0.0014 //0.015 // Pitch&Roll Proportional Gain
|
|
#define Ki_ROLLPITCH 0.0000003 // 0.00001 Pitch&Roll Integrator Gain
|
|
#define Kp_YAW 1.2 // 1.2 Yaw Porportional Gain
|
|
#define Ki_YAW 0.00005 // 0.00005 Yaw Integrator Gain
|
|
|
|
// Sensor: GYROX, GYROY, GYROZ, ACCELX, ACCELY, ACCELZ
|
|
const uint8_t AP_DCM::_sensors[6] = {1,2,0,4,5,6}; // For ArduPilot Mega Sensor Shield Hardware
|
|
const int AP_DCM::_sensor_signs[] = {1,-1,-1,-1,1,1,-1,-1,-1}; //{-1,1,-1,1,-1,1,-1,-1,-1} !!!! These are probably not right
|
|
|
|
// Temp compensation curve constants
|
|
// These must be produced by measuring data and curve fitting
|
|
// [X/Y/Z gyro][A/B/C or 0 order/1st order/2nd order constants]
|
|
const float AP_DCM::_gyro_temp_curve[3][3] = {
|
|
{1665,0,0},
|
|
{1665,0,0},
|
|
{1665,0,0}
|
|
}; // values may migrate to a Config file
|
|
|
|
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
AP_DCM::AP_DCM(APM_Compass *withCompass) :
|
|
_compass(withCompass),
|
|
_dcm_matrix(1, 0, 0,
|
|
0, 1, 0,
|
|
0, 0, 1),
|
|
_G_Dt(0.02),
|
|
_course_over_ground_x(0),
|
|
_course_over_ground_y(1)
|
|
{
|
|
}
|
|
|
|
void
|
|
AP_DCM::update_DCM(void)
|
|
{
|
|
read_adc_raw(); // Get current values for IMU sensors
|
|
matrix_update(); // Integrate the DCM matrix
|
|
normalize(); // Normalize the DCM matrix
|
|
drift_correction(); // Perform drift correction
|
|
euler_angles(); // Calculate pitch, roll, yaw for stabilization and navigation
|
|
}
|
|
|
|
|
|
// Read the 6 ADC channels needed for the IMU
|
|
// ------------------------------------------
|
|
void
|
|
AP_DCM::read_adc_raw(void)
|
|
{
|
|
int tc_temp = adc.Ch(_gyro_temp_ch);
|
|
for (int i = 0; i < 6; i++) {
|
|
_adc_in[i] = adc.Ch(_sensors[i]);
|
|
if (i < 3) { // XXX magic numbers!
|
|
_adc_in[i] -= _gyro_temp_comp(i, tc_temp); // Subtract temp compensated typical gyro bias
|
|
} else {
|
|
_adc_in[i] -= 2025; // Subtract typical accel bias
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns the temperature compensated raw gyro value
|
|
//---------------------------------------------------
|
|
float
|
|
AP_DCM::_gyro_temp_comp(int i, int temp) const
|
|
{
|
|
// We use a 2nd order curve of the form Gtc = A + B * Graw + C * (Graw)**2
|
|
//------------------------------------------------------------------------
|
|
return _gyro_temp_curve[i][0] + _gyro_temp_curve[i][1] * temp + _gyro_temp_curve[i][2] * temp * temp;
|
|
}
|
|
|
|
// Returns an analog value with the offset removed
|
|
// -----------------
|
|
float
|
|
AP_DCM::read_adc(int select)
|
|
{
|
|
float temp;
|
|
if (_sensor_signs[select] < 0)
|
|
temp = (_adc_offset[select] - _adc_in[select]);
|
|
else
|
|
temp = (_adc_in[select] - _adc_offset[select]);
|
|
|
|
if (abs(temp) > ADC_CONSTRAINT)
|
|
adc_constraints++; // We keep track of the number of times we constrain the ADC output for performance reporting
|
|
|
|
/*
|
|
// For checking the pitch/roll drift correction gain time constants
|
|
switch (select) {
|
|
case 3:
|
|
return 0;
|
|
break;
|
|
case 4:
|
|
return 0;
|
|
break;
|
|
case 5:
|
|
return 400;
|
|
break;
|
|
}
|
|
*/
|
|
|
|
|
|
//End of drift correction gain test code
|
|
|
|
return constrain(temp, -ADC_CONSTRAINT, ADC_CONSTRAINT); // Throw out nonsensical values
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::normalize(void)
|
|
{
|
|
float error = 0;
|
|
DCM_Vector temporary[3];
|
|
|
|
uint8_t problem = 0;
|
|
|
|
error = -_dcm_matrix(0).dot_product(_dcm_matrix(1)) * 0.5; // eq.19
|
|
|
|
temporary[0] = _dcm_matrix(1) * error + _dcm_matrix(0); // eq.19
|
|
temporary[1] = _dcm_matrix(0) * error + _dcm_matrix(1); // eq.19
|
|
|
|
temporary[2] = temporary[0] ^ temporary[1]; // c= a x b // eq.20
|
|
|
|
_dcm_matrix(0) = _renorm(temporary[0], problem);
|
|
_dcm_matrix(1) = _renorm(temporary[1], problem);
|
|
_dcm_matrix(2) = _renorm(temporary[2], problem);
|
|
|
|
if (problem == 1) { // Our solution is blowing up and we will force back to initial condition. Hope we are not upside down!
|
|
_dcm_matrix(0, 0)= 1.0f;
|
|
_dcm_matrix(0, 1)= 0.0f;
|
|
_dcm_matrix(0, 2)= 0.0f;
|
|
_dcm_matrix(1, 0)= 0.0f;
|
|
_dcm_matrix(1, 1)= 1.0f;
|
|
_dcm_matrix(1, 2)= 0.0f;
|
|
_dcm_matrix(2, 0)= 0.0f;
|
|
_dcm_matrix(2, 1)= 0.0f;
|
|
_dcm_matrix(2, 2)= 1.0f;
|
|
}
|
|
}
|
|
|
|
DCM_Vector
|
|
AP_DCM::_renorm(DCM_Vector const &a, uint8_t &problem)
|
|
{
|
|
float renorm;
|
|
|
|
renorm = a.dot_product(a);
|
|
|
|
if (renorm < 1.5625f && renorm > 0.64f) { // Check if we are OK with Taylor expansion
|
|
renorm = 0.5 * (3 - renorm); // eq.21
|
|
} else if (renorm < 100.0f && renorm > 0.01f) {
|
|
renorm = 1.0 / sqrt(renorm);
|
|
renorm_sqrt_count++;
|
|
} else {
|
|
problem = 1;
|
|
renorm_blowup_count++;
|
|
}
|
|
|
|
return(a * renorm);
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::drift_correction(void)
|
|
{
|
|
//Compensation the Roll, Pitch and Yaw drift.
|
|
float mag_heading_x;
|
|
float mag_heading_y;
|
|
float error_course = 0;
|
|
static float scaled_omega_P[3];
|
|
static float scaled_omega_I[3];
|
|
float accel_magnitude;
|
|
float accel_weight;
|
|
float integrator_magnitude;
|
|
|
|
//*****Roll and Pitch***************
|
|
|
|
// Calculate the magnitude of the accelerometer vector
|
|
accel_magnitude = _accel_vector.magnitude() / GRAVITY; // Scale to gravity.
|
|
|
|
// Dynamic weighting of accelerometer info (reliability filter)
|
|
// Weight for accelerometer info (<0.5G = 0.0, 1G = 1.0 , >1.5G = 0.0)
|
|
accel_weight = constrain(1 - 2 * abs(1 - accel_magnitude), 0, 1); //
|
|
|
|
// We monitor the amount that the accelerometer based drift correction is deweighted for performanc reporting
|
|
imu_health = imu_health + 0.02 * (accel_weight-.5);
|
|
imu_health = constrain(imu_health, 0, 1);
|
|
|
|
// adjust the ground of reference
|
|
_error_roll_pitch = _accel_vector ^ _dcm_matrix(2);
|
|
|
|
// error_roll_pitch are in Accel ADC units
|
|
// Limit max error_roll_pitch to limit max omega_P and omega_I
|
|
_error_roll_pitch(0) = constrain(_error_roll_pitch(0), -50, 50);
|
|
_error_roll_pitch(1) = constrain(_error_roll_pitch(1), -50, 50);
|
|
_error_roll_pitch(2) = constrain(_error_roll_pitch(2), -50, 50);
|
|
|
|
_omega_P = _error_roll_pitch * (Kp_ROLLPITCH * accel_weight);
|
|
_omega_I += _error_roll_pitch * (Ki_ROLLPITCH * accel_weight);
|
|
|
|
//*****YAW***************
|
|
|
|
if (_compass) {
|
|
// We make the gyro YAW drift correction based on compass magnetic heading
|
|
error_course= (_dcm_matrix(0, 0) * _compass->Heading_Y) - (_dcm_matrix(1, 0) * _compass->Heading_X); // Calculating YAW error
|
|
} else {
|
|
// Use GPS Ground course to correct yaw gyro drift
|
|
if (ground_speed >= SPEEDFILT) {
|
|
// Optimization: We have precalculated course_over_ground_x and course_over_ground_y (Course over Ground X and Y) from GPS info
|
|
error_course = (_dcm_matrix(0, 0) * _course_over_ground_y) - (_dcm_matrix(1, 0) * _course_over_ground_x); // Calculating YAW error
|
|
}
|
|
}
|
|
_error_yaw = _dcm_matrix(2) * error_course; // Applys the yaw correction to the XYZ rotation of the aircraft, depeding the position.
|
|
|
|
_omega_P += _error_yaw * Kp_YAW; // Adding Proportional.
|
|
_omega_I += _error_yaw * Ki_YAW; // adding integrator to the omega_I
|
|
|
|
// Here we will place a limit on the integrator so that the integrator cannot ever exceed half the saturation limit of the gyros
|
|
integrator_magnitude = sqrt(_omega_I.dot_product(_omega_I));
|
|
if (integrator_magnitude > radians(300)) {
|
|
_omega_I *= (0.5f * radians(300) / integrator_magnitude);
|
|
}
|
|
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::_accel_adjust(void)
|
|
{
|
|
_accel_vector(1) += accel_scale((ground_speed / 100) * _omega(2)); // Centrifugal force on Acc_y = GPS_speed * GyroZ
|
|
_accel_vector(2) -= accel_scale((ground_speed / 100) * _omega(1)); // Centrifugal force on Acc_z = GPS_speed * GyroY
|
|
}
|
|
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::matrix_update(void)
|
|
{
|
|
DCM_Matrix update_matrix;
|
|
|
|
_gyro_vector(0) = gyro_scaled_X(read_adc(0)); // gyro x roll
|
|
_gyro_vector(1) = gyro_scaled_Y(read_adc(1)); // gyro y pitch
|
|
_gyro_vector(2) = gyro_scaled_Z(read_adc(2)); // gyro Z yaw
|
|
|
|
//Record when you saturate any of the gyros.
|
|
if((abs(_gyro_vector(0)) >= radians(300)) ||
|
|
(abs(_gyro_vector(1)) >= radians(300)) ||
|
|
(abs(_gyro_vector(2)) >= radians(300)))
|
|
gyro_sat_count++;
|
|
|
|
/*
|
|
Serial.print (__adc_in[0]);
|
|
Serial.print (" ");
|
|
Serial.print (_adc_offset[0]);
|
|
Serial.print (" ");
|
|
Serial.print (_gyro_vector(0));
|
|
Serial.print (" ");
|
|
Serial.print (__adc_in[1]);
|
|
Serial.print (" ");
|
|
Serial.print (_adc_offset[1]);
|
|
Serial.print (" ");
|
|
Serial.print (_gyro_vector(1));
|
|
Serial.print (" ");
|
|
Serial.print (__adc_in[2]);
|
|
Serial.print (" ");
|
|
Serial.print (_adc_offset[2]);
|
|
Serial.print (" ");
|
|
Serial.println (_gyro_vector(2));
|
|
*/
|
|
|
|
// _accel_vector(0) = read_adc(3); // acc x
|
|
// _accel_vector(1) = read_adc(4); // acc y
|
|
// _accel_vector(2) = read_adc(5); // acc z
|
|
// Low pass filter on accelerometer data (to filter vibrations)
|
|
_accel_vector(0) = _accel_vector(0) * 0.6 + (float)read_adc(3) * 0.4; // acc x
|
|
_accel_vector(1) = _accel_vector(1) * 0.6 + (float)read_adc(4) * 0.4; // acc y
|
|
_accel_vector(2) = _accel_vector(2) * 0.6 + (float)read_adc(5) * 0.4; // acc z
|
|
|
|
_omega = _gyro_vector + _omega_I; // adding proportional term
|
|
_omega_vector = _omega + _omega_P; // adding Integrator term
|
|
|
|
_accel_adjust(); // Remove centrifugal acceleration.
|
|
|
|
#if OUTPUTMODE == 1
|
|
update_matrix(0, 0) = 0;
|
|
update_matrix(0, 1) = -_G_Dt * _omega_vector(2); // -z
|
|
update_matrix(0, 2) = _G_Dt * _omega_vector(1); // y
|
|
update_matrix(1, 0) = _G_Dt * _omega_vector(2); // z
|
|
update_matrix(1, 1) = 0;
|
|
update_matrix(1, 2) = -_G_Dt * _omega_vector(0); // -x
|
|
update_matrix(2, 0) = -_G_Dt * _omega_vector(1); // -y
|
|
update_matrix(2, 1) = _G_Dt * _omega_vector(0); // x
|
|
update_matrix(2, 2) = 0;
|
|
#else // Uncorrected data (no drift correction)
|
|
update_matrix(0, 0) = 0;
|
|
update_matrix(0, 1) = -_G_Dt * _gyro_vector(2); // -z
|
|
update_matrix(0, 2) = _G_Dt * _gyro_vector(1); // y
|
|
update_matrix(1, 0) = _G_Dt * _gyro_vector(2); // z
|
|
update_matrix(1, 1) = 0;
|
|
update_matrix(1, 2) = -_G_Dt * _gyro_vector(0);
|
|
update_matrix(2, 0) = -_G_Dt * _gyro_vector(1);
|
|
update_matrix(2, 1) = _G_Dt * _gyro_vector(0);
|
|
update_matrix(2, 2) = 0;
|
|
#endif
|
|
|
|
// update
|
|
_dcm_matrix += _dcm_matrix * update_matrix;
|
|
|
|
/*
|
|
Serial.print (_G_Dt * 1000);
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(0, 0));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(0, 1));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(0, 2));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(1, 0));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(1, 1));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(1, 2));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(2, 0));
|
|
Serial.print (" ");
|
|
Serial.print (dcm_matrix(2, 1));
|
|
Serial.print (" ");
|
|
Serial.println (dcm_matrix(2, 2));
|
|
*/
|
|
}
|
|
|
|
/**************************************************/
|
|
void
|
|
AP_DCM::euler_angles(void)
|
|
{
|
|
#if (OUTPUTMODE == 2) // Only accelerometer info (debugging purposes)
|
|
roll = atan2(_accel_vector(1), _accel_vector(2)); // atan2(acc_y, acc_z)
|
|
roll_sensor = degrees(roll) * 100;
|
|
pitch = -asin((_accel_vector(0)) / (double)GRAVITY); // asin(acc_x)
|
|
pitch_sensor = degrees(pitch) * 100;
|
|
yaw = 0;
|
|
#else
|
|
pitch = -asin(_dcm_matrix(2, 0));
|
|
pitch_sensor = degrees(pitch) * 100;
|
|
roll = atan2(_dcm_matrix(2, 1), _dcm_matrix(2, 2));
|
|
roll_sensor = degrees(roll) * 100;
|
|
yaw = atan2(_dcm_matrix(1, 0), _dcm_matrix(0, 0));
|
|
yaw_sensor = degrees(yaw) * 100;
|
|
#endif
|
|
|
|
/*
|
|
Serial.print ("Roll ");
|
|
Serial.print (roll_sensor / 100);
|
|
Serial.print (", Pitch ");
|
|
Serial.print (pitch_sensor / 100);
|
|
Serial.print (", Yaw ");
|
|
Serial.println (yaw_sensor / 100);
|
|
*/
|
|
}
|
|
|
|
/**************************************************/
|
|
//Computes the dot product of two vectors
|
|
float
|
|
DCM_Vector::dot_product(DCM_Vector const &vector2) const
|
|
{
|
|
float op = 0;
|
|
|
|
for(int c = 0; c < 3; c++)
|
|
op += _v[c] * vector2(c);
|
|
|
|
return op;
|
|
}
|
|
|
|
// cross-product
|
|
DCM_Vector
|
|
DCM_Vector::operator^(DCM_Vector const &a) const
|
|
{
|
|
DCM_Vector result;
|
|
|
|
result(0) = (_v[1] * a(2)) - (_v[2] * a(1));
|
|
result(1) = (_v[2] * a(0)) - (_v[0] * a(2));
|
|
result(2) = (_v[0] * a(1)) - (_v[1] * a(0));
|
|
|
|
return(result);
|
|
}
|
|
|
|
// scale
|
|
DCM_Vector
|
|
DCM_Vector::operator*(float scale) const
|
|
{
|
|
DCM_Vector result;
|
|
|
|
result(0) = _v[0] * scale;
|
|
result(1) = _v[1] * scale;
|
|
result(2) = _v[2] * scale;
|
|
|
|
return(result);
|
|
}
|
|
|
|
// scale
|
|
void
|
|
DCM_Vector::operator*=(float scale)
|
|
{
|
|
_v[0] *= scale;
|
|
_v[1] *= scale;
|
|
_v[2] *= scale;
|
|
}
|
|
|
|
// add
|
|
DCM_Vector
|
|
DCM_Vector::operator+(DCM_Vector const &a) const
|
|
{
|
|
DCM_Vector result;
|
|
|
|
result(0) = _v[0] + a(0);
|
|
result(1) = _v[1] + a(1);
|
|
result(2) = _v[2] + a(2);
|
|
|
|
return(result);
|
|
}
|
|
|
|
// add
|
|
void
|
|
DCM_Vector::operator+=(DCM_Vector const &a)
|
|
{
|
|
_v[0] += a(0);
|
|
_v[1] += a(1);
|
|
_v[2] += a(2);
|
|
}
|
|
|
|
// magnitude
|
|
float
|
|
DCM_Vector::magnitude(void) const
|
|
{
|
|
return(sqrt((_v[0] * _v[0]) +
|
|
(_v[1] * _v[1]) +
|
|
(_v[2] * _v[2])));
|
|
}
|
|
|
|
// 3x3 matrix multiply
|
|
DCM_Matrix
|
|
DCM_Matrix::operator*(DCM_Matrix const &a) const
|
|
{
|
|
DCM_Matrix result;
|
|
|
|
for (int x = 0; x < 3; x++) {
|
|
for (int y = 0; y < 3; y++) {
|
|
result(x, y) =
|
|
_m[x](0) * a(0, y) +
|
|
_m[x](1) * a(1, y) +
|
|
_m[x](2) * a(2, y);
|
|
}
|
|
}
|
|
return(result);
|
|
}
|
|
|
|
// 3x3 matrix add
|
|
void
|
|
DCM_Matrix::operator+=(DCM_Matrix const &a)
|
|
{
|
|
for (int x = 0; x < 3; x++)
|
|
for (int y = 0; y < 3; y++)
|
|
_m[x](y) += a(x,y);
|
|
}
|
|
|