Ardupilot2/ArduPlane/Attitude.cpp
2022-12-13 17:10:06 +11:00

957 lines
36 KiB
C++

#include "Plane.h"
/*
calculate speed scaling number for control surfaces. This is applied
to PIDs to change the scaling of the PID with speed. At high speed
we move the surfaces less, and at low speeds we move them more.
*/
float Plane::calc_speed_scaler(void)
{
float aspeed, speed_scaler;
if (ahrs.airspeed_estimate(aspeed)) {
if (aspeed > auto_state.highest_airspeed && hal.util->get_soft_armed()) {
auto_state.highest_airspeed = aspeed;
}
// ensure we have scaling over the full configured airspeed
const float airspeed_min = MAX(aparm.airspeed_min, MIN_AIRSPEED_MIN);
const float scale_min = MIN(0.5, g.scaling_speed / (2.0 * aparm.airspeed_max));
const float scale_max = MAX(2.0, g.scaling_speed / (0.7 * airspeed_min));
if (aspeed > 0.0001f) {
speed_scaler = g.scaling_speed / aspeed;
} else {
speed_scaler = scale_max;
}
speed_scaler = constrain_float(speed_scaler, scale_min, scale_max);
#if HAL_QUADPLANE_ENABLED
if (quadplane.in_vtol_mode() && hal.util->get_soft_armed()) {
// when in VTOL modes limit surface movement at low speed to prevent instability
float threshold = airspeed_min * 0.5;
if (aspeed < threshold) {
float new_scaler = linear_interpolate(0.001, g.scaling_speed / threshold, aspeed, 0, threshold);
speed_scaler = MIN(speed_scaler, new_scaler);
// we also decay the integrator to prevent an integrator from before
// we were at low speed persistint at high speed
rollController.decay_I();
pitchController.decay_I();
yawController.decay_I();
}
}
#endif
} else if (hal.util->get_soft_armed()) {
// scale assumed surface movement using throttle output
float throttle_out = MAX(SRV_Channels::get_output_scaled(SRV_Channel::k_throttle), 1);
speed_scaler = sqrtf(THROTTLE_CRUISE / throttle_out);
// This case is constrained tighter as we don't have real speed info
speed_scaler = constrain_float(speed_scaler, 0.6f, 1.67f);
} else {
// no speed estimate and not armed, use a unit scaling
speed_scaler = 1;
}
if (!plane.ahrs.airspeed_sensor_enabled() &&
(plane.g2.flight_options & FlightOptions::SURPRESS_TKOFF_SCALING) &&
(plane.flight_stage == AP_FixedWing::FlightStage::TAKEOFF)) { //scaling is surpressed during climb phase of automatic takeoffs with no airspeed sensor being used due to problems with inaccurate airspeed estimates
return MIN(speed_scaler, 1.0f) ;
}
return speed_scaler;
}
/*
return true if the current settings and mode should allow for stick mixing
*/
bool Plane::stick_mixing_enabled(void)
{
if (!rc().has_valid_input()) {
// never stick mix without valid RC
return false;
}
#if AP_FENCE_ENABLED
const bool stickmixing = fence_stickmixing();
#else
const bool stickmixing = true;
#endif
#if HAL_QUADPLANE_ENABLED
if (control_mode == &mode_qrtl &&
quadplane.poscontrol.get_state() >= QuadPlane::QPOS_POSITION1) {
// user may be repositioning
return false;
}
if (quadplane.in_vtol_land_poscontrol()) {
// user may be repositioning
return false;
}
#endif
if (control_mode->does_auto_throttle() && plane.control_mode->does_auto_navigation()) {
// we're in an auto mode. Check the stick mixing flag
if (g.stick_mixing != StickMixing::NONE &&
g.stick_mixing != StickMixing::VTOL_YAW &&
stickmixing) {
return true;
} else {
return false;
}
}
if (failsafe.rc_failsafe && g.fs_action_short == FS_ACTION_SHORT_FBWA) {
// don't do stick mixing in FBWA glide mode
return false;
}
// non-auto mode. Always do stick mixing
return true;
}
/*
this is the main roll stabilization function. It takes the
previously set nav_roll calculates roll servo_out to try to
stabilize the plane at the given roll
*/
void Plane::stabilize_roll(float speed_scaler)
{
if (fly_inverted()) {
// we want to fly upside down. We need to cope with wrap of
// the roll_sensor interfering with wrap of nav_roll, which
// would really confuse the PID code. The easiest way to
// handle this is to ensure both go in the same direction from
// zero
nav_roll_cd += 18000;
if (ahrs.roll_sensor < 0) nav_roll_cd -= 36000;
}
const float roll_out = stabilize_roll_get_roll_out(speed_scaler);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, roll_out);
}
float Plane::stabilize_roll_get_roll_out(float speed_scaler)
{
#if HAL_QUADPLANE_ENABLED
if (!quadplane.use_fw_attitude_controllers()) {
// use the VTOL rate for control, to ensure consistency
const auto &pid_info = quadplane.attitude_control->get_rate_roll_pid().get_pid_info();
const float roll_out = rollController.get_rate_out(degrees(pid_info.target), speed_scaler);
/* when slaving fixed wing control to VTOL control we need to decay the integrator to prevent
opposing integrators balancing between the two controllers
*/
rollController.decay_I();
return roll_out;
}
#endif
bool disable_integrator = false;
if (control_mode == &mode_stabilize && channel_roll->get_control_in() != 0) {
disable_integrator = true;
}
return rollController.get_servo_out(nav_roll_cd - ahrs.roll_sensor, speed_scaler, disable_integrator,
ground_mode && !(plane.g2.flight_options & FlightOptions::DISABLE_GROUND_PID_SUPPRESSION));
}
/*
this is the main pitch stabilization function. It takes the
previously set nav_pitch and calculates servo_out values to try to
stabilize the plane at the given attitude.
*/
void Plane::stabilize_pitch(float speed_scaler)
{
int8_t force_elevator = takeoff_tail_hold();
if (force_elevator != 0) {
// we are holding the tail down during takeoff. Just convert
// from a percentage to a -4500..4500 centidegree angle
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, 45*force_elevator);
return;
}
const float pitch_out = stabilize_pitch_get_pitch_out(speed_scaler);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitch_out);
}
float Plane::stabilize_pitch_get_pitch_out(float speed_scaler)
{
#if HAL_QUADPLANE_ENABLED
if (!quadplane.use_fw_attitude_controllers()) {
// use the VTOL rate for control, to ensure consistency
const auto &pid_info = quadplane.attitude_control->get_rate_pitch_pid().get_pid_info();
const int32_t pitch_out = pitchController.get_rate_out(degrees(pid_info.target), speed_scaler);
/* when slaving fixed wing control to VTOL control we need to decay the integrator to prevent
opposing integrators balancing between the two controllers
*/
pitchController.decay_I();
return pitch_out;
}
#endif
// if LANDING_FLARE RCx_OPTION switch is set and in FW mode, manual throttle,throttle idle then set pitch to LAND_PITCH_CD if flight option FORCE_FLARE_ATTITUDE is set
#if HAL_QUADPLANE_ENABLED
const bool quadplane_in_transition = quadplane.in_transition();
#else
const bool quadplane_in_transition = false;
#endif
int32_t demanded_pitch = nav_pitch_cd + g.pitch_trim_cd + SRV_Channels::get_output_scaled(SRV_Channel::k_throttle) * g.kff_throttle_to_pitch;
bool disable_integrator = false;
if (control_mode == &mode_stabilize && channel_pitch->get_control_in() != 0) {
disable_integrator = true;
}
/* force landing pitch if:
- flare switch high
- throttle stick at zero thrust
- in fixed wing non auto-throttle mode
*/
if (!quadplane_in_transition &&
!control_mode->is_vtol_mode() &&
!control_mode->does_auto_throttle() &&
flare_mode == FlareMode::ENABLED_PITCH_TARGET &&
throttle_at_zero()) {
demanded_pitch = landing.get_pitch_cd();
}
return pitchController.get_servo_out(demanded_pitch - ahrs.pitch_sensor, speed_scaler, disable_integrator,
ground_mode && !(plane.g2.flight_options & FlightOptions::DISABLE_GROUND_PID_SUPPRESSION));
}
/*
this gives the user control of the aircraft in stabilization modes
*/
void Plane::stabilize_stick_mixing_direct()
{
if (!stick_mixing_enabled() ||
control_mode == &mode_acro ||
control_mode == &mode_fbwa ||
control_mode == &mode_autotune ||
control_mode == &mode_fbwb ||
control_mode == &mode_cruise ||
#if HAL_QUADPLANE_ENABLED
control_mode == &mode_qstabilize ||
control_mode == &mode_qhover ||
control_mode == &mode_qloiter ||
control_mode == &mode_qland ||
control_mode == &mode_qrtl ||
control_mode == &mode_qacro ||
#if QAUTOTUNE_ENABLED
control_mode == &mode_qautotune ||
#endif
#endif
control_mode == &mode_training) {
return;
}
float aileron = SRV_Channels::get_output_scaled(SRV_Channel::k_aileron);
aileron = channel_roll->stick_mixing(aileron);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, aileron);
if ((control_mode == &mode_loiter) && (plane.g2.flight_options & FlightOptions::ENABLE_LOITER_ALT_CONTROL)) {
// loiter is using altitude control based on the pitch stick, don't use it again here
return;
}
float elevator = SRV_Channels::get_output_scaled(SRV_Channel::k_elevator);
elevator = channel_pitch->stick_mixing(elevator);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elevator);
}
/*
this gives the user control of the aircraft in stabilization modes
using FBW style controls
*/
void Plane::stabilize_stick_mixing_fbw()
{
if (!stick_mixing_enabled() ||
control_mode == &mode_acro ||
control_mode == &mode_fbwa ||
control_mode == &mode_autotune ||
control_mode == &mode_fbwb ||
control_mode == &mode_cruise ||
#if HAL_QUADPLANE_ENABLED
control_mode == &mode_qstabilize ||
control_mode == &mode_qhover ||
control_mode == &mode_qloiter ||
control_mode == &mode_qland ||
control_mode == &mode_qacro ||
#if QAUTOTUNE_ENABLED
control_mode == &mode_qautotune ||
#endif
#endif // HAL_QUADPLANE_ENABLED
control_mode == &mode_training) {
return;
}
// do FBW style stick mixing. We don't treat it linearly
// however. For inputs up to half the maximum, we use linear
// addition to the nav_roll and nav_pitch. Above that it goes
// non-linear and ends up as 2x the maximum, to ensure that
// the user can direct the plane in any direction with stick
// mixing.
float roll_input = channel_roll->norm_input();
if (roll_input > 0.5f) {
roll_input = (3*roll_input - 1);
} else if (roll_input < -0.5f) {
roll_input = (3*roll_input + 1);
}
nav_roll_cd += roll_input * roll_limit_cd;
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
if ((control_mode == &mode_loiter) && (plane.g2.flight_options & FlightOptions::ENABLE_LOITER_ALT_CONTROL)) {
// loiter is using altitude control based on the pitch stick, don't use it again here
return;
}
float pitch_input = channel_pitch->norm_input();
if (pitch_input > 0.5f) {
pitch_input = (3*pitch_input - 1);
} else if (pitch_input < -0.5f) {
pitch_input = (3*pitch_input + 1);
}
if (fly_inverted()) {
pitch_input = -pitch_input;
}
if (pitch_input > 0) {
nav_pitch_cd += pitch_input * aparm.pitch_limit_max_cd;
} else {
nav_pitch_cd += -(pitch_input * pitch_limit_min_cd);
}
nav_pitch_cd = constrain_int32(nav_pitch_cd, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
}
/*
stabilize the yaw axis. There are 3 modes of operation:
- hold a specific heading with ground steering
- rate controlled with ground steering
- yaw control for coordinated flight
*/
void Plane::stabilize_yaw(float speed_scaler)
{
if (landing.is_flaring()) {
// in flaring then enable ground steering
steering_control.ground_steering = true;
} else {
// otherwise use ground steering when no input control and we
// are below the GROUND_STEER_ALT
steering_control.ground_steering = (channel_roll->get_control_in() == 0 &&
fabsf(relative_altitude) < g.ground_steer_alt);
if (!landing.is_ground_steering_allowed()) {
// don't use ground steering on landing approach
steering_control.ground_steering = false;
}
}
/*
first calculate steering_control.steering for a nose or tail
wheel. We use "course hold" mode for the rudder when either performing
a flare (when the wings are held level) or when in course hold in
FBWA mode (when we are below GROUND_STEER_ALT)
*/
if (landing.is_flaring() ||
(steer_state.hold_course_cd != -1 && steering_control.ground_steering)) {
calc_nav_yaw_course();
} else if (steering_control.ground_steering) {
calc_nav_yaw_ground();
}
/*
now calculate steering_control.rudder for the rudder
*/
calc_nav_yaw_coordinated(speed_scaler);
}
/*
a special stabilization function for training mode
*/
void Plane::stabilize_training(float speed_scaler)
{
const float rexpo = roll_in_expo(false);
const float pexpo = pitch_in_expo(false);
if (training_manual_roll) {
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rexpo);
} else {
// calculate what is needed to hold
stabilize_roll(speed_scaler);
if ((nav_roll_cd > 0 && rexpo < SRV_Channels::get_output_scaled(SRV_Channel::k_aileron)) ||
(nav_roll_cd < 0 && rexpo > SRV_Channels::get_output_scaled(SRV_Channel::k_aileron))) {
// allow user to get out of the roll
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rexpo);
}
}
if (training_manual_pitch) {
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pexpo);
} else {
stabilize_pitch(speed_scaler);
if ((nav_pitch_cd > 0 && pexpo < SRV_Channels::get_output_scaled(SRV_Channel::k_elevator)) ||
(nav_pitch_cd < 0 && pexpo > SRV_Channels::get_output_scaled(SRV_Channel::k_elevator))) {
// allow user to get back to level
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pexpo);
}
}
stabilize_yaw(speed_scaler);
}
/*
this is the ACRO mode stabilization function. It does rate
stabilization on roll and pitch axes
*/
void Plane::stabilize_acro(float speed_scaler)
{
if (g.acro_locking == 2 && g.acro_yaw_rate > 0 &&
yawController.rate_control_enabled()) {
// we can do 3D acro locking
stabilize_acro_quaternion(speed_scaler);
return;
}
const float rexpo = roll_in_expo(true);
const float pexpo = pitch_in_expo(true);
float roll_rate = (rexpo/SERVO_MAX) * g.acro_roll_rate;
float pitch_rate = (pexpo/SERVO_MAX) * g.acro_pitch_rate;
IGNORE_RETURN(plane.ahrs.get_quaternion(plane.acro_state.q));
/*
check for special roll handling near the pitch poles
*/
if (g.acro_locking && is_zero(roll_rate)) {
/*
we have no roll stick input, so we will enter "roll locked"
mode, and hold the roll we had when the stick was released
*/
if (!acro_state.locked_roll) {
acro_state.locked_roll = true;
acro_state.locked_roll_err = 0;
} else {
acro_state.locked_roll_err += ahrs.get_gyro().x * G_Dt;
}
int32_t roll_error_cd = -ToDeg(acro_state.locked_roll_err)*100;
nav_roll_cd = ahrs.roll_sensor + roll_error_cd;
// try to reduce the integrated angular error to zero. We set
// 'stabilze' to true, which disables the roll integrator
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rollController.get_servo_out(roll_error_cd,
speed_scaler,
true, false));
} else {
/*
aileron stick is non-zero, use pure rate control until the
user releases the stick
*/
acro_state.locked_roll = false;
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rollController.get_rate_out(roll_rate, speed_scaler));
}
if (g.acro_locking && is_zero(pitch_rate)) {
/*
user has zero pitch stick input, so we lock pitch at the
point they release the stick
*/
if (!acro_state.locked_pitch) {
acro_state.locked_pitch = true;
acro_state.locked_pitch_cd = ahrs.pitch_sensor;
}
// try to hold the locked pitch. Note that we have the pitch
// integrator enabled, which helps with inverted flight
nav_pitch_cd = acro_state.locked_pitch_cd;
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitchController.get_servo_out(nav_pitch_cd - ahrs.pitch_sensor,
speed_scaler,
false, false));
} else {
/*
user has non-zero pitch input, use a pure rate controller
*/
acro_state.locked_pitch = false;
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitchController.get_rate_out(pitch_rate, speed_scaler));
}
steering_control.steering = rudder_input();
if (g.acro_yaw_rate > 0 && yawController.rate_control_enabled()) {
// user has asked for yaw rate control with yaw rate scaled by ACRO_YAW_RATE
const float rudd_expo = rudder_in_expo(true);
const float yaw_rate = (rudd_expo/SERVO_MAX) * g.acro_yaw_rate;
steering_control.steering = steering_control.rudder = yawController.get_rate_out(yaw_rate, speed_scaler, false);
} else if (plane.g2.flight_options & FlightOptions::ACRO_YAW_DAMPER) {
// use yaw controller
calc_nav_yaw_coordinated(speed_scaler);
} else {
/*
manual rudder
*/
steering_control.rudder = steering_control.steering;
}
}
/*
quaternion based acro stabilization with continuous locking. Enabled with ACRO_LOCKING=2
*/
void Plane::stabilize_acro_quaternion(float speed_scaler)
{
auto &q = acro_state.q;
const float rexpo = roll_in_expo(true);
const float pexpo = pitch_in_expo(true);
const float yexpo = rudder_in_expo(true);
// get pilot desired rates
float roll_rate = (rexpo/SERVO_MAX) * g.acro_roll_rate;
float pitch_rate = (pexpo/SERVO_MAX) * g.acro_pitch_rate;
float yaw_rate = (yexpo/SERVO_MAX) * g.acro_yaw_rate;
bool roll_active = !is_zero(roll_rate);
bool pitch_active = !is_zero(pitch_rate);
bool yaw_active = !is_zero(yaw_rate);
// integrate target attitude
Vector3f r{ float(radians(roll_rate)), float(radians(pitch_rate)), float(radians(yaw_rate)) };
r *= G_Dt;
q.rotate_fast(r);
q.normalize();
// fill in target roll/pitch for GCS/logs
nav_roll_cd = degrees(q.get_euler_roll())*100;
nav_pitch_cd = degrees(q.get_euler_pitch())*100;
// get AHRS attitude
Quaternion ahrs_q;
IGNORE_RETURN(ahrs.get_quaternion(ahrs_q));
// zero target if not flying, no stick input and zero throttle
if (is_zero(get_throttle_input()) &&
!is_flying() &&
is_zero(roll_rate) &&
is_zero(pitch_rate) &&
is_zero(yaw_rate)) {
// cope with sitting on the ground with neutral sticks, no throttle
q = ahrs_q;
}
// get error in attitude
Quaternion error_quat = ahrs_q.inverse() * q;
Vector3f error_angle1;
error_quat.to_axis_angle(error_angle1);
// don't let too much error build up, limit to 0.2s
const float max_error_t = 0.2;
float max_err_roll_rad = radians(g.acro_roll_rate*max_error_t);
float max_err_pitch_rad = radians(g.acro_pitch_rate*max_error_t);
float max_err_yaw_rad = radians(g.acro_yaw_rate*max_error_t);
if (!roll_active && acro_state.roll_active_last) {
max_err_roll_rad = 0;
}
if (!pitch_active && acro_state.pitch_active_last) {
max_err_pitch_rad = 0;
}
if (!yaw_active && acro_state.yaw_active_last) {
max_err_yaw_rad = 0;
}
Vector3f desired_rates = error_angle1;
desired_rates.x = constrain_float(desired_rates.x, -max_err_roll_rad, max_err_roll_rad);
desired_rates.y = constrain_float(desired_rates.y, -max_err_pitch_rad, max_err_pitch_rad);
desired_rates.z = constrain_float(desired_rates.z, -max_err_yaw_rad, max_err_yaw_rad);
// correct target based on max error
q.rotate_fast(desired_rates - error_angle1);
q.normalize();
// convert to desired body rates
desired_rates.x /= rollController.tau();
desired_rates.y /= pitchController.tau();
desired_rates.z /= pitchController.tau(); // no yaw tau parameter, use pitch
desired_rates *= degrees(1.0);
if (roll_active) {
desired_rates.x = roll_rate;
}
if (pitch_active) {
desired_rates.y = pitch_rate;
}
if (yaw_active) {
desired_rates.z = yaw_rate;
}
// call to rate controllers
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, rollController.get_rate_out(desired_rates.x, speed_scaler));
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, pitchController.get_rate_out(desired_rates.y, speed_scaler));
steering_control.steering = steering_control.rudder = yawController.get_rate_out(desired_rates.z, speed_scaler, false);
acro_state.roll_active_last = roll_active;
acro_state.pitch_active_last = pitch_active;
acro_state.yaw_active_last = yaw_active;
}
/*
main stabilization function for all 3 axes
*/
void Plane::stabilize()
{
if (control_mode == &mode_manual) {
// reset steering controls
steer_state.locked_course = false;
steer_state.locked_course_err = 0;
return;
}
float speed_scaler = get_speed_scaler();
uint32_t now = AP_HAL::millis();
bool allow_stick_mixing = true;
#if HAL_QUADPLANE_ENABLED
if (quadplane.available()) {
quadplane.transition->set_FW_roll_pitch(nav_pitch_cd, nav_roll_cd, allow_stick_mixing);
}
#endif
if (now - last_stabilize_ms > 2000) {
// if we haven't run the rate controllers for 2 seconds then
// reset the integrators
rollController.reset_I();
pitchController.reset_I();
yawController.reset_I();
// and reset steering controls
steer_state.locked_course = false;
steer_state.locked_course_err = 0;
}
last_stabilize_ms = now;
if (control_mode == &mode_training) {
stabilize_training(speed_scaler);
#if AP_SCRIPTING_ENABLED
} else if (nav_scripting_active()) {
// scripting is in control of roll and pitch rates and throttle
const float aileron = rollController.get_rate_out(nav_scripting.roll_rate_dps, speed_scaler);
const float elevator = pitchController.get_rate_out(nav_scripting.pitch_rate_dps, speed_scaler);
SRV_Channels::set_output_scaled(SRV_Channel::k_aileron, aileron);
SRV_Channels::set_output_scaled(SRV_Channel::k_elevator, elevator);
if (yawController.rate_control_enabled()) {
const float rudder = yawController.get_rate_out(nav_scripting.yaw_rate_dps, speed_scaler, false);
steering_control.rudder = rudder;
}
#endif
} else if (control_mode == &mode_acro) {
stabilize_acro(speed_scaler);
#if HAL_QUADPLANE_ENABLED
} else if (control_mode->is_vtol_mode() && !quadplane.tailsitter.in_vtol_transition(now)) {
// run controlers specific to this mode
plane.control_mode->run();
// we also stabilize using fixed wing surfaces
if (plane.control_mode->mode_number() == Mode::Number::QACRO) {
stabilize_acro(speed_scaler);
} else {
stabilize_roll(speed_scaler);
stabilize_pitch(speed_scaler);
}
#endif
} else {
if (allow_stick_mixing && g.stick_mixing == StickMixing::FBW && control_mode != &mode_stabilize) {
stabilize_stick_mixing_fbw();
}
stabilize_roll(speed_scaler);
stabilize_pitch(speed_scaler);
if (allow_stick_mixing && (g.stick_mixing == StickMixing::DIRECT || control_mode == &mode_stabilize)) {
stabilize_stick_mixing_direct();
}
stabilize_yaw(speed_scaler);
}
/*
see if we should zero the attitude controller integrators.
*/
if (is_zero(get_throttle_input()) &&
fabsf(relative_altitude) < 5.0f &&
fabsf(barometer.get_climb_rate()) < 0.5f &&
ahrs.groundspeed() < 3) {
// we are low, with no climb rate, and zero throttle, and very
// low ground speed. Zero the attitude controller
// integrators. This prevents integrator buildup pre-takeoff.
rollController.reset_I();
pitchController.reset_I();
yawController.reset_I();
// if moving very slowly also zero the steering integrator
if (ahrs.groundspeed() < 1) {
steerController.reset_I();
}
}
}
void Plane::calc_throttle()
{
if (aparm.throttle_cruise <= 1) {
// user has asked for zero throttle - this may be done by a
// mission which wants to turn off the engine for a parachute
// landing
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, 0.0);
return;
}
float commanded_throttle = TECS_controller.get_throttle_demand();
// Received an external msg that guides throttle in the last 3 seconds?
if (control_mode->is_guided_mode() &&
plane.guided_state.last_forced_throttle_ms > 0 &&
millis() - plane.guided_state.last_forced_throttle_ms < 3000) {
commanded_throttle = plane.guided_state.forced_throttle;
}
SRV_Channels::set_output_scaled(SRV_Channel::k_throttle, commanded_throttle);
}
/*****************************************
* Calculate desired roll/pitch/yaw angles (in medium freq loop)
*****************************************/
/*
calculate yaw control for coordinated flight
*/
void Plane::calc_nav_yaw_coordinated(float speed_scaler)
{
bool disable_integrator = false;
int16_t rudder_in = rudder_input();
int16_t commanded_rudder;
bool using_rate_controller = false;
// Received an external msg that guides yaw in the last 3 seconds?
if (control_mode->is_guided_mode() &&
plane.guided_state.last_forced_rpy_ms.z > 0 &&
millis() - plane.guided_state.last_forced_rpy_ms.z < 3000) {
commanded_rudder = plane.guided_state.forced_rpy_cd.z;
} else if (control_mode == &mode_autotune && g.acro_yaw_rate > 0 && yawController.rate_control_enabled()) {
// user is doing an AUTOTUNE with yaw rate control
const float rudd_expo = rudder_in_expo(true);
const float yaw_rate = (rudd_expo/SERVO_MAX) * g.acro_yaw_rate;
// add in the corrdinated turn yaw rate to make it easier to fly while tuning the yaw rate controller
const float coordination_yaw_rate = degrees(GRAVITY_MSS * tanf(radians(nav_roll_cd*0.01f))/MAX(aparm.airspeed_min,smoothed_airspeed));
commanded_rudder = yawController.get_rate_out(yaw_rate+coordination_yaw_rate, speed_scaler, false);
using_rate_controller = true;
} else {
if (control_mode == &mode_stabilize && rudder_in != 0) {
disable_integrator = true;
}
commanded_rudder = yawController.get_servo_out(speed_scaler, disable_integrator);
// add in rudder mixing from roll
commanded_rudder += SRV_Channels::get_output_scaled(SRV_Channel::k_aileron) * g.kff_rudder_mix;
commanded_rudder += rudder_in;
}
steering_control.rudder = constrain_int16(commanded_rudder, -4500, 4500);
if (!using_rate_controller) {
/*
When not running the yaw rate controller, we need to reset the rate
*/
yawController.reset_rate_PID();
}
}
/*
calculate yaw control for ground steering with specific course
*/
void Plane::calc_nav_yaw_course(void)
{
// holding a specific navigation course on the ground. Used in
// auto-takeoff and landing
int32_t bearing_error_cd = nav_controller->bearing_error_cd();
steering_control.steering = steerController.get_steering_out_angle_error(bearing_error_cd);
if (stick_mixing_enabled()) {
steering_control.steering = channel_rudder->stick_mixing(steering_control.steering);
}
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500);
}
/*
calculate yaw control for ground steering
*/
void Plane::calc_nav_yaw_ground(void)
{
if (gps.ground_speed() < 1 &&
is_zero(get_throttle_input()) &&
flight_stage != AP_FixedWing::FlightStage::TAKEOFF &&
flight_stage != AP_FixedWing::FlightStage::ABORT_LANDING) {
// manual rudder control while still
steer_state.locked_course = false;
steer_state.locked_course_err = 0;
steering_control.steering = rudder_input();
return;
}
// if we haven't been steering for 1s then clear locked course
const uint32_t now_ms = AP_HAL::millis();
if (now_ms - steer_state.last_steer_ms > 1000) {
steer_state.locked_course = false;
}
steer_state.last_steer_ms = now_ms;
float steer_rate = (rudder_input()/4500.0f) * g.ground_steer_dps;
if (flight_stage == AP_FixedWing::FlightStage::TAKEOFF ||
flight_stage == AP_FixedWing::FlightStage::ABORT_LANDING) {
steer_rate = 0;
}
if (!is_zero(steer_rate)) {
// pilot is giving rudder input
steer_state.locked_course = false;
} else if (!steer_state.locked_course) {
// pilot has released the rudder stick or we are still - lock the course
steer_state.locked_course = true;
if (flight_stage != AP_FixedWing::FlightStage::TAKEOFF &&
flight_stage != AP_FixedWing::FlightStage::ABORT_LANDING) {
steer_state.locked_course_err = 0;
}
}
if (!steer_state.locked_course) {
// use a rate controller at the pilot specified rate
steering_control.steering = steerController.get_steering_out_rate(steer_rate);
} else {
// use a error controller on the summed error
int32_t yaw_error_cd = -ToDeg(steer_state.locked_course_err)*100;
steering_control.steering = steerController.get_steering_out_angle_error(yaw_error_cd);
}
steering_control.steering = constrain_int16(steering_control.steering, -4500, 4500);
}
/*
calculate a new nav_pitch_cd from the speed height controller
*/
void Plane::calc_nav_pitch()
{
// Calculate the Pitch of the plane
// --------------------------------
int32_t commanded_pitch = TECS_controller.get_pitch_demand();
// Received an external msg that guides roll in the last 3 seconds?
if (control_mode->is_guided_mode() &&
plane.guided_state.last_forced_rpy_ms.y > 0 &&
millis() - plane.guided_state.last_forced_rpy_ms.y < 3000) {
commanded_pitch = plane.guided_state.forced_rpy_cd.y;
}
nav_pitch_cd = constrain_int32(commanded_pitch, pitch_limit_min_cd, aparm.pitch_limit_max_cd.get());
}
/*
calculate a new nav_roll_cd from the navigation controller
*/
void Plane::calc_nav_roll()
{
int32_t commanded_roll = nav_controller->nav_roll_cd();
// Received an external msg that guides roll in the last 3 seconds?
if (control_mode->is_guided_mode() &&
plane.guided_state.last_forced_rpy_ms.x > 0 &&
millis() - plane.guided_state.last_forced_rpy_ms.x < 3000) {
commanded_roll = plane.guided_state.forced_rpy_cd.x;
#if OFFBOARD_GUIDED == ENABLED
// guided_state.target_heading is radians at this point between -pi and pi ( defaults to -4 )
} else if ((control_mode == &mode_guided) && (guided_state.target_heading_type != GUIDED_HEADING_NONE) ) {
uint32_t tnow = AP_HAL::millis();
float delta = (tnow - guided_state.target_heading_time_ms) * 1e-3f;
guided_state.target_heading_time_ms = tnow;
float error = 0.0f;
if (guided_state.target_heading_type == GUIDED_HEADING_HEADING) {
error = wrap_PI(guided_state.target_heading - AP::ahrs().yaw);
} else {
Vector2f groundspeed = AP::ahrs().groundspeed_vector();
error = wrap_PI(guided_state.target_heading - atan2f(-groundspeed.y, -groundspeed.x) + M_PI);
}
float bank_limit = degrees(atanf(guided_state.target_heading_accel_limit/GRAVITY_MSS)) * 1e2f;
g2.guidedHeading.update_error(error, delta); // push error into AC_PID , possible improvement is to use update_all instead.?
float i = g2.guidedHeading.get_i(); // get integrator TODO
if (((is_negative(error) && !guided_state.target_heading_limit_low) || (is_positive(error) && !guided_state.target_heading_limit_high))) {
i = g2.guidedHeading.get_i();
}
float desired = g2.guidedHeading.get_p() + i + g2.guidedHeading.get_d();
guided_state.target_heading_limit_low = (desired <= -bank_limit);
guided_state.target_heading_limit_high = (desired >= bank_limit);
commanded_roll = constrain_float(desired, -bank_limit, bank_limit);
#endif // OFFBOARD_GUIDED == ENABLED
}
nav_roll_cd = constrain_int32(commanded_roll, -roll_limit_cd, roll_limit_cd);
update_load_factor();
}
/*
adjust nav_pitch_cd for STAB_PITCH_DOWN_CD. This is used to make
keeping up good airspeed in FBWA mode easier, as the plane will
automatically pitch down a little when at low throttle. It makes
FBWA landings without stalling much easier.
*/
void Plane::adjust_nav_pitch_throttle(void)
{
int8_t throttle = throttle_percentage();
if (throttle >= 0 && throttle < aparm.throttle_cruise && flight_stage != AP_FixedWing::FlightStage::VTOL) {
float p = (aparm.throttle_cruise - throttle) / (float)aparm.throttle_cruise;
nav_pitch_cd -= g.stab_pitch_down * 100.0f * p;
}
}
/*
calculate a new aerodynamic_load_factor and limit nav_roll_cd to
ensure that the load factor does not take us below the sustainable
airspeed
*/
void Plane::update_load_factor(void)
{
float demanded_roll = fabsf(nav_roll_cd*0.01f);
if (demanded_roll > 85) {
// limit to 85 degrees to prevent numerical errors
demanded_roll = 85;
}
aerodynamic_load_factor = 1.0f / safe_sqrt(cosf(radians(demanded_roll)));
#if HAL_QUADPLANE_ENABLED
if (quadplane.available() && quadplane.transition->set_FW_roll_limit(roll_limit_cd)) {
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit_cd, roll_limit_cd);
return;
}
#endif
if (!aparm.stall_prevention) {
// stall prevention is disabled
return;
}
if (fly_inverted()) {
// no roll limits when inverted
return;
}
#if HAL_QUADPLANE_ENABLED
if (quadplane.tailsitter.active()) {
// no limits while hovering
return;
}
#endif
float max_load_factor = smoothed_airspeed / MAX(aparm.airspeed_min, 1);
if (max_load_factor <= 1) {
// our airspeed is below the minimum airspeed. Limit roll to
// 25 degrees
nav_roll_cd = constrain_int32(nav_roll_cd, -2500, 2500);
roll_limit_cd = MIN(roll_limit_cd, 2500);
} else if (max_load_factor < aerodynamic_load_factor) {
// the demanded nav_roll would take us past the aerodymamic
// load limit. Limit our roll to a bank angle that will keep
// the load within what the airframe can handle. We always
// allow at least 25 degrees of roll however, to ensure the
// aircraft can be maneuvered with a bad airspeed estimate. At
// 25 degrees the load factor is 1.1 (10%)
int32_t roll_limit = degrees(acosf(sq(1.0f / max_load_factor)))*100;
if (roll_limit < 2500) {
roll_limit = 2500;
}
nav_roll_cd = constrain_int32(nav_roll_cd, -roll_limit, roll_limit);
roll_limit_cd = MIN(roll_limit_cd, roll_limit);
}
}