Ardupilot2/APMrover2/mode.cpp

185 lines
7.0 KiB
C++

#include "mode.h"
#include "Rover.h"
Mode::Mode() :
ahrs(rover.ahrs),
g(rover.g),
g2(rover.g2),
channel_steer(rover.channel_steer),
channel_throttle(rover.channel_throttle),
mission(rover.mission),
attitude_control(rover.g2.attitude_control)
{ }
void Mode::exit()
{
// call sub-classes exit
_exit();
lateral_acceleration = 0.0f;
rover.g.pidSpeedThrottle.reset_I();
}
bool Mode::enter()
{
g2.motors.slew_limit_throttle(false);
return _enter();
}
// set desired location
void Mode::set_desired_location(const struct Location& destination)
{
// record targets
_origin = rover.current_loc;
_destination = destination;
_desired_speed = g.speed_cruise;
// initialise distance
_distance_to_destination = get_distance(_origin, _destination);
_reached_destination = false;
}
// set desired heading and speed
void Mode::set_desired_heading_and_speed(float yaw_angle_cd, float target_speed)
{
// handle initialisation
_reached_destination = false;
// record targets
_desired_yaw_cd = yaw_angle_cd;
_desired_speed = target_speed;
}
void Mode::calc_throttle(float target_speed, bool reversed)
{
// get ground speed from vehicle
const float &groundspeed = rover.ground_speed;
// calculate ground speed and ground speed error
_speed_error = fabsf(target_speed) - groundspeed;
const float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise;
const float throttle_target = throttle_base + calc_throttle_nudge();
float throttle = throttle_target + (g.pidSpeedThrottle.get_pid(_speed_error * 100.0f) / 100.0f);
if (reversed) {
g2.motors.set_throttle(constrain_int16(-throttle, -g.throttle_max, -g.throttle_min));
} else {
g2.motors.set_throttle(constrain_int16(throttle, g.throttle_min, g.throttle_max));
}
if (!reversed && g.braking_percent != 0 && _speed_error < -g.braking_speederr) {
// the user has asked to use reverse throttle to brake. Apply
// it in proportion to the ground speed error, but only when
// our ground speed error is more than BRAKING_SPEEDERR.
//
// We use a linear gain, with 0 gain at a ground speed error
// of braking_speederr, and 100% gain when groundspeed_error
// is 2*braking_speederr
const float brake_gain = constrain_float(((-_speed_error)-g.braking_speederr)/g.braking_speederr, 0.0f, 1.0f);
const int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain;
g2.motors.set_throttle(constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min));
}
}
// calculate pilot input to nudge throttle up or down
int16_t Mode::calc_throttle_nudge()
{
// get pilot throttle input (-100 to +100)
int16_t pilot_throttle = rover.channel_throttle->get_control_in();
int16_t throttle_nudge = 0;
// Check if the throttle value is above 50% and we need to nudge
// Make sure its above 50% in the direction we are travelling
if ((fabsf(pilot_throttle) > 50.0f) &&
(((pilot_throttle < 0) && rover.in_reverse) ||
((pilot_throttle > 0) && !rover.in_reverse))) {
throttle_nudge = (rover.g.throttle_max - rover.g.throttle_cruise) * ((fabsf(rover.channel_throttle->norm_input()) - 0.5f) / 0.5f);
}
return throttle_nudge;
}
// calculated a reduced speed(in m/s) based on yaw error and lateral acceleration and/or distance to a waypoint
// should be called after calc_lateral_acceleration and before calc_throttle
// relies on these internal members being updated: lateral_acceleration, _yaw_error_cd, _distance_to_destination
float Mode::calc_reduced_speed_for_turn_or_distance(float desired_speed)
{
// this method makes use the following internal variables
const float yaw_error_cd = _yaw_error_cd;
const float target_lateral_accel_G = lateral_acceleration;
const float distance_to_waypoint = _distance_to_destination;
// calculate the yaw_error_ratio which is the error (capped at 90degrees) expressed as a ratio (from 0 ~ 1)
float yaw_error_ratio = constrain_float(fabsf(yaw_error_cd / 9000.0f), 0.0f, 1.0f);
// apply speed_turn_gain parameter (expressed as a percentage) to yaw_error_ratio
yaw_error_ratio *= (100 - g.speed_turn_gain) * 0.01f;
// calculate absolute lateral acceleration expressed as a ratio (from 0 ~ 1) of the vehicle's maximum lateral acceleration
const float lateral_accel_ratio = constrain_float(fabsf(target_lateral_accel_G / (g.turn_max_g * GRAVITY_MSS)), 0.0f, 1.0f);
// calculate a lateral acceleration based speed scaling
const float lateral_accel_speed_scaling = 1.0f - lateral_accel_ratio * yaw_error_ratio;
// calculate a pivot steering based speed scaling (default to no reduction)
float pivot_speed_scaling = 1.0f;
if (rover.use_pivot_steering(yaw_error_cd)) {
pivot_speed_scaling = 0.0f;
}
// calculate a waypoint distance based scaling (default to no reduction)
float distance_speed_scaling = 1.0f;
if (is_positive(distance_to_waypoint)) {
distance_speed_scaling = 1.0f - yaw_error_ratio;
}
// return minimum speed
return desired_speed * MIN(MIN(lateral_accel_speed_scaling, distance_speed_scaling), pivot_speed_scaling);
}
// calculate the lateral acceleration target to cause the vehicle to drive along the path from origin to destination
// this function update lateral_acceleration and _yaw_error_cd members
void Mode::calc_lateral_acceleration(const struct Location &origin, const struct Location &destination, bool reversed)
{
// Calculate the required turn of the wheels
// negative error = left turn
// positive error = right turn
rover.nav_controller->set_reverse(reversed);
rover.nav_controller->update_waypoint(origin, destination);
lateral_acceleration = rover.nav_controller->lateral_acceleration();
if (reversed) {
_yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor + 18000);
} else {
_yaw_error_cd = wrap_180_cd(rover.nav_controller->target_bearing_cd() - ahrs.yaw_sensor);
}
if (rover.use_pivot_steering(_yaw_error_cd)) {
if (is_positive(_yaw_error_cd)) {
lateral_acceleration = g.turn_max_g * GRAVITY_MSS;
}
if (is_negative(_yaw_error_cd)) {
lateral_acceleration = -g.turn_max_g * GRAVITY_MSS;
}
}
}
/*
calculate steering angle given lateral_acceleration
*/
void Mode::calc_nav_steer(bool reversed)
{
// add obstacle avoidance response to lateral acceleration target
if (!reversed) {
lateral_acceleration += (rover.obstacle.turn_angle / 45.0f) * g.turn_max_g;
}
// constrain to max G force
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g * GRAVITY_MSS, g.turn_max_g * GRAVITY_MSS);
// send final steering command to motor library
float steering_out = attitude_control.get_steering_out_lat_accel(lateral_acceleration, g2.motors.have_skid_steering(), g2.motors.limit.steer_left, g2.motors.limit.steer_right);
g2.motors.set_steering(steering_out * 4500.0f);
}