Ardupilot2/ArduCopter/radio.pde
2014-11-26 11:14:44 +11:00

205 lines
6.5 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Function that will read the radio data, limit servos and trigger a failsafe
// ----------------------------------------------------------------------------
static void default_dead_zones()
{
g.rc_1.set_default_dead_zone(30);
g.rc_2.set_default_dead_zone(30);
#if FRAME_CONFIG == HELI_FRAME
g.rc_3.set_default_dead_zone(10);
g.rc_4.set_default_dead_zone(15);
g.rc_8.set_default_dead_zone(10);
#else
g.rc_3.set_default_dead_zone(30);
g.rc_4.set_default_dead_zone(40);
#endif
g.rc_6.set_default_dead_zone(0);
}
static void init_rc_in()
{
// set rc channel ranges
g.rc_1.set_angle(ROLL_PITCH_INPUT_MAX);
g.rc_2.set_angle(ROLL_PITCH_INPUT_MAX);
g.rc_3.set_range(g.throttle_min, g.throttle_max);
g.rc_4.set_angle(4500);
g.rc_1.set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
g.rc_2.set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
g.rc_4.set_type(RC_CHANNEL_TYPE_ANGLE_RAW);
//set auxiliary servo ranges
g.rc_5.set_range(0,1000);
g.rc_6.set_range(0,1000);
g.rc_7.set_range(0,1000);
g.rc_8.set_range(0,1000);
// set default dead zones
default_dead_zones();
// initialise throttle_zero flag
ap.throttle_zero = true;
}
// init_rc_out -- initialise motors and check if pilot wants to perform ESC calibration
static void init_rc_out()
{
motors.set_update_rate(g.rc_speed);
motors.set_frame_orientation(g.frame_orientation);
motors.Init(); // motor initialisation
motors.set_min_throttle(g.throttle_min);
for(uint8_t i = 0; i < 5; i++) {
delay(20);
read_radio();
}
// we want the input to be scaled correctly
g.rc_3.set_range_out(0,1000);
// check if we should enter esc calibration mode
esc_calibration_startup_check();
// enable output to motors
pre_arm_rc_checks();
if (ap.pre_arm_rc_check) {
output_min();
}
// setup correct scaling for ESCs like the UAVCAN PX4ESC which
// take a proportion of speed. Note: this assumes rc_3 is
// throttle and should really use rcmap.
hal.rcout->set_esc_scaling(g.rc_3.radio_min, g.rc_3.radio_max);
}
// output_min - enable and output lowest possible value to motors
void output_min()
{
// enable motors
motors.enable();
motors.output_min();
}
static void read_radio()
{
static uint32_t last_update_ms = 0;
uint32_t tnow_ms = millis();
if (hal.rcin->new_input()) {
last_update_ms = tnow_ms;
ap.new_radio_frame = true;
uint16_t periods[8];
hal.rcin->read(periods,8);
g.rc_1.set_pwm(periods[rcmap.roll()-1]);
g.rc_2.set_pwm(periods[rcmap.pitch()-1]);
set_throttle_and_failsafe(periods[rcmap.throttle()-1]);
set_throttle_zero_flag(g.rc_3.control_in);
g.rc_4.set_pwm(periods[rcmap.yaw()-1]);
g.rc_5.set_pwm(periods[4]);
g.rc_6.set_pwm(periods[5]);
g.rc_7.set_pwm(periods[6]);
g.rc_8.set_pwm(periods[7]);
// read channels 9 ~ 14
for (uint8_t i=8; i<RC_MAX_CHANNELS; i++) {
if (RC_Channel::rc_channel(i) != NULL) {
RC_Channel::rc_channel(i)->set_pwm(RC_Channel::rc_channel(i)->read());
}
}
// flag we must have an rc receiver attached
if (!failsafe.rc_override_active) {
ap.rc_receiver_present = true;
}
// update output on any aux channels, for manual passthru
RC_Channel_aux::output_ch_all();
}else{
uint32_t elapsed = tnow_ms - last_update_ms;
// turn on throttle failsafe if no update from the RC Radio for 500ms or 2000ms if we are using RC_OVERRIDE
if (((!failsafe.rc_override_active && (elapsed >= FS_RADIO_TIMEOUT_MS)) || (failsafe.rc_override_active && (elapsed >= FS_RADIO_RC_OVERRIDE_TIMEOUT_MS))) &&
(g.failsafe_throttle && motors.armed() && !failsafe.radio)) {
Log_Write_Error(ERROR_SUBSYSTEM_RADIO, ERROR_CODE_RADIO_LATE_FRAME);
set_failsafe_radio(true);
}
}
}
#define FS_COUNTER 3 // radio failsafe kicks in after 3 consecutive throttle values below failsafe_throttle_value
static void set_throttle_and_failsafe(uint16_t throttle_pwm)
{
// if failsafe not enabled pass through throttle and exit
if(g.failsafe_throttle == FS_THR_DISABLED) {
g.rc_3.set_pwm(throttle_pwm);
return;
}
//check for low throttle value
if (throttle_pwm < (uint16_t)g.failsafe_throttle_value) {
// if we are already in failsafe or motors not armed pass through throttle and exit
if (failsafe.radio || !motors.armed()) {
g.rc_3.set_pwm(throttle_pwm);
return;
}
// check for 3 low throttle values
// Note: we do not pass through the low throttle until 3 low throttle values are recieved
failsafe.radio_counter++;
if( failsafe.radio_counter >= FS_COUNTER ) {
failsafe.radio_counter = FS_COUNTER; // check to ensure we don't overflow the counter
set_failsafe_radio(true);
g.rc_3.set_pwm(throttle_pwm); // pass through failsafe throttle
}
}else{
// we have a good throttle so reduce failsafe counter
failsafe.radio_counter--;
if( failsafe.radio_counter <= 0 ) {
failsafe.radio_counter = 0; // check to ensure we don't underflow the counter
// disengage failsafe after three (nearly) consecutive valid throttle values
if (failsafe.radio) {
set_failsafe_radio(false);
}
}
// pass through throttle
g.rc_3.set_pwm(throttle_pwm);
}
}
#define THROTTLE_ZERO_DEBOUNCE_TIME_MS 400
// set_throttle_zero_flag - set throttle_zero flag from debounced throttle control_in
static void set_throttle_zero_flag(int16_t throttle_control)
{
static uint32_t last_nonzero_throttle_ms = 0;
uint32_t tnow_ms = millis();
// if non-zero throttle immediately set as non-zero
if (throttle_control > 0) {
last_nonzero_throttle_ms = tnow_ms;
ap.throttle_zero = false;
} else if (tnow_ms - last_nonzero_throttle_ms > THROTTLE_ZERO_DEBOUNCE_TIME_MS) {
ap.throttle_zero = true;
}
}
static void trim_radio()
{
for (uint8_t i = 0; i < 30; i++) {
read_radio();
}
g.rc_1.trim(); // roll
g.rc_2.trim(); // pitch
g.rc_4.trim(); // yaw
g.rc_1.save_eeprom();
g.rc_2.save_eeprom();
g.rc_4.save_eeprom();
}