236 lines
7.7 KiB
C++
236 lines
7.7 KiB
C++
#include <AP_Math/AP_Math.h>
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
|
|
#include <AP_Compass/AP_Compass.h>
|
|
#include <AP_Declination/AP_Declination.h>
|
|
#include <DataFlash/DataFlash.h>
|
|
|
|
#include "Compass_learn.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL &hal;
|
|
|
|
// constructor
|
|
CompassLearn::CompassLearn(Compass &_compass) :
|
|
compass(_compass)
|
|
{
|
|
gcs().send_text(MAV_SEVERITY_INFO, "CompassLearn: Initialised");
|
|
}
|
|
|
|
/*
|
|
update when new compass sample available
|
|
*/
|
|
void CompassLearn::update(void)
|
|
{
|
|
const AP_AHRS &ahrs = AP::ahrs();
|
|
if (converged || compass.get_learn_type() != Compass::LEARN_INFLIGHT ||
|
|
!hal.util->get_soft_armed() || ahrs.get_time_flying_ms() < 3000) {
|
|
// only learn when flying and with enough time to be clear of
|
|
// the ground
|
|
return;
|
|
}
|
|
|
|
if (!have_earth_field) {
|
|
Location loc;
|
|
if (!ahrs.get_position(loc)) {
|
|
// need to wait till we have a global position
|
|
return;
|
|
}
|
|
|
|
// remember primary mag
|
|
primary_mag = compass.get_primary();
|
|
|
|
// setup the expected earth field at this location
|
|
float declination_deg=0, inclination_deg=0, intensity_gauss=0;
|
|
AP_Declination::get_mag_field_ef(loc.lat*1.0e-7, loc.lng*1.0e-7, intensity_gauss, declination_deg, inclination_deg);
|
|
|
|
// create earth field
|
|
mag_ef = Vector3f(intensity_gauss*1000, 0.0, 0.0);
|
|
Matrix3f R;
|
|
|
|
R.from_euler(0.0f, -ToRad(inclination_deg), ToRad(declination_deg));
|
|
mag_ef = R * mag_ef;
|
|
|
|
have_earth_field = true;
|
|
|
|
// form eliptical correction matrix and invert it. This is
|
|
// needed to remove the effects of the eliptical correction
|
|
// when calculating new offsets
|
|
const Vector3f &diagonals = compass.get_diagonals(primary_mag);
|
|
const Vector3f &offdiagonals = compass.get_offdiagonals(primary_mag);
|
|
mat = Matrix3f(
|
|
diagonals.x, offdiagonals.x, offdiagonals.y,
|
|
offdiagonals.x, diagonals.y, offdiagonals.z,
|
|
offdiagonals.y, offdiagonals.z, diagonals.z
|
|
);
|
|
if (!mat.invert()) {
|
|
// if we can't invert, use the identity matrix
|
|
mat.identity();
|
|
}
|
|
|
|
// set initial error to field intensity
|
|
for (uint16_t i=0; i<num_sectors; i++) {
|
|
errors[i] = intensity_gauss*1000;
|
|
}
|
|
|
|
gcs().send_text(MAV_SEVERITY_INFO, "CompassLearn: have earth field");
|
|
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&CompassLearn::io_timer, void));
|
|
}
|
|
|
|
if (sample_available) {
|
|
// last sample still being processed by IO thread
|
|
return;
|
|
}
|
|
|
|
Vector3f field = compass.get_field(primary_mag);
|
|
Vector3f field_change = field - last_field;
|
|
if (field_change.length() < min_field_change) {
|
|
return;
|
|
}
|
|
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
// give a sample to the backend to process
|
|
new_sample.field = field;
|
|
new_sample.offsets = compass.get_offsets(primary_mag);
|
|
new_sample.attitude = Vector3f(ahrs.roll, ahrs.pitch, ahrs.yaw);
|
|
sample_available = true;
|
|
last_field = field;
|
|
num_samples++;
|
|
}
|
|
|
|
if (sample_available) {
|
|
DataFlash_Class::instance()->Log_Write("COFS", "TimeUS,OfsX,OfsY,OfsZ,Var,Yaw,WVar,N", "QffffffI",
|
|
AP_HAL::micros64(),
|
|
(double)best_offsets.x,
|
|
(double)best_offsets.y,
|
|
(double)best_offsets.z,
|
|
(double)best_error,
|
|
(double)best_yaw_deg,
|
|
(double)worst_error,
|
|
num_samples);
|
|
}
|
|
|
|
if (!converged) {
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
// set offsets to current best guess
|
|
compass.set_offsets(primary_mag, best_offsets);
|
|
|
|
// set non-primary offsets to match primary
|
|
Vector3f field_primary = compass.get_field(primary_mag);
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
if (i == primary_mag || !compass._state[i].use_for_yaw) {
|
|
continue;
|
|
}
|
|
Vector3f field2 = compass.get_field(i);
|
|
Vector3f new_offsets = compass.get_offsets(i) + (field_primary - field2);
|
|
compass.set_offsets(i, new_offsets);
|
|
}
|
|
|
|
// stop updating the offsets once converged
|
|
if (num_samples > 30 && best_error < 50 && worst_error > 65) {
|
|
// set the offsets and enable compass for EKF use. Let the
|
|
// EKF learn the remaining compass offset error
|
|
for (uint8_t i=0; i<compass.get_count(); i++) {
|
|
if (compass._state[i].use_for_yaw) {
|
|
compass.save_offsets(i);
|
|
compass.set_use_for_yaw(i, true);
|
|
}
|
|
}
|
|
compass.set_learn_type(Compass::LEARN_NONE, true);
|
|
// setup so use can trigger it again
|
|
converged = false;
|
|
sample_available = false;
|
|
num_samples = 0;
|
|
have_earth_field = false;
|
|
memset(predicted_offsets, 0, sizeof(predicted_offsets));
|
|
worst_error = 0;
|
|
best_error = 0;
|
|
best_yaw_deg = 0;
|
|
best_offsets.zero();
|
|
gcs().send_text(MAV_SEVERITY_INFO, "CompassLearn: finished");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
we run the math intensive calculations in the IO thread
|
|
*/
|
|
void CompassLearn::io_timer(void)
|
|
{
|
|
if (!sample_available) {
|
|
return;
|
|
}
|
|
|
|
struct sample s;
|
|
|
|
{
|
|
WITH_SEMAPHORE(sem);
|
|
s = new_sample;
|
|
sample_available = false;
|
|
}
|
|
|
|
process_sample(s);
|
|
}
|
|
|
|
/*
|
|
process a new compass sample
|
|
*/
|
|
void CompassLearn::process_sample(const struct sample &s)
|
|
{
|
|
uint16_t besti = 0;
|
|
float bestv = 0, worstv=0;
|
|
|
|
/*
|
|
we run through the 72 possible yaw error values, and for each
|
|
one we calculate a value for the compass offsets if that yaw
|
|
error is correct.
|
|
*/
|
|
for (uint16_t i=0; i<num_sectors; i++) {
|
|
float yaw_err_deg = i*(360/num_sectors);
|
|
|
|
// form rotation matrix for the euler attitude
|
|
Matrix3f dcm;
|
|
dcm.from_euler(s.attitude.x, s.attitude.y, wrap_2PI(s.attitude.z + radians(yaw_err_deg)));
|
|
|
|
// calculate the field we would expect to get if this yaw error is correct
|
|
Vector3f expected_field = dcm.transposed() * mag_ef;
|
|
|
|
// calculate a value for the compass offsets for this yaw error
|
|
Vector3f v1 = mat * s.field;
|
|
Vector3f v2 = mat * expected_field;
|
|
Vector3f offsets = (v2 - v1) + s.offsets;
|
|
float delta = (offsets - predicted_offsets[i]).length();
|
|
|
|
if (num_samples == 1) {
|
|
predicted_offsets[i] = offsets;
|
|
} else {
|
|
// lowpass the predicted offsets and the error
|
|
const float learn_rate = 0.92;
|
|
predicted_offsets[i] = predicted_offsets[i] * learn_rate + offsets * (1-learn_rate);
|
|
errors[i] = errors[i] * learn_rate + delta * (1-learn_rate);
|
|
}
|
|
|
|
// keep track of the current best prediction
|
|
if (i == 0 || errors[i] < bestv) {
|
|
besti = i;
|
|
bestv = errors[i];
|
|
}
|
|
// also keep the worst error. This is used as part of the convergence test
|
|
if (i == 0 || errors[i] > worstv) {
|
|
worstv = errors[i];
|
|
}
|
|
}
|
|
|
|
WITH_SEMAPHORE(sem);
|
|
|
|
// pass the current estimate to the front-end
|
|
best_offsets = predicted_offsets[besti];
|
|
best_error = bestv;
|
|
worst_error = worstv;
|
|
best_yaw_deg = wrap_360(degrees(s.attitude.z) + besti * (360/num_sectors));
|
|
}
|