5f0e943f0f
saves a bit of flash space
1681 lines
82 KiB
C++
1681 lines
82 KiB
C++
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <GCS_MAVLink/GCS.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
#define earthRate 0.000072921f // earth rotation rate (rad/sec)
|
|
|
|
// initial imu bias uncertainty (deg/sec)
|
|
#define INIT_ACCEL_BIAS_UNCERTAINTY 0.5f
|
|
|
|
// maximum allowed gyro bias (rad/sec)
|
|
#define GYRO_BIAS_LIMIT 0.5f
|
|
|
|
/*
|
|
to run EK2 timing tests you need to set ENABLE_EKF_TIMING to 1, plus setup as follows:
|
|
- copter at 400Hz
|
|
- INS_FAST_SAMPLE=0
|
|
- EKF2_MAG_CAL=4
|
|
- GPS_TYPE=14
|
|
- load fakegps in mavproxy
|
|
- ensure a compass is enabled
|
|
- wait till EK2 reports "using GPS" (this is important, ignore earlier results)
|
|
|
|
DO NOT FLY WITH THIS ENABLED
|
|
*/
|
|
#define ENABLE_EKF_TIMING 0
|
|
|
|
// constructor
|
|
NavEKF2_core::NavEKF2_core(NavEKF2 *_frontend) :
|
|
frontend(_frontend),
|
|
dal(AP::dal())
|
|
{
|
|
}
|
|
|
|
// setup this core backend
|
|
bool NavEKF2_core::setup_core(uint8_t _imu_index, uint8_t _core_index)
|
|
{
|
|
imu_index = _imu_index;
|
|
gyro_index_active = _imu_index;
|
|
accel_index_active = _imu_index;
|
|
core_index = _core_index;
|
|
|
|
/*
|
|
the imu_buffer_length needs to cope with a 260ms delay at a
|
|
maximum fusion rate of 100Hz. Non-imu data coming in at faster
|
|
than 100Hz is downsampled. For 50Hz main loop rate we need a
|
|
shorter buffer.
|
|
*/
|
|
if (dal.ins().get_loop_rate_hz() < 100) {
|
|
imu_buffer_length = 13;
|
|
} else {
|
|
// maximum 260 msec delay at 100 Hz fusion rate
|
|
imu_buffer_length = 26;
|
|
}
|
|
if(!storedGPS.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedMag.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedBaro.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedTAS.init(OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedOF.init(FLOW_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
// Note: the use of dual range finders potentially doubles the amount of to be stored
|
|
if(!storedRange.init(2*OBS_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
// Note: range beacon data is read one beacon at a time and can arrive at a high rate
|
|
if(!storedRangeBeacon.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedExtNav.init(EXTNAV_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
if(!storedIMU.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedOutput.init(imu_buffer_length)) {
|
|
return false;
|
|
}
|
|
if(!storedExtNavVel.init(EXTNAV_BUFFER_LENGTH)) {
|
|
return false;
|
|
}
|
|
|
|
if ((yawEstimator == nullptr) && (frontend->_gsfRunMask & (1U<<core_index))) {
|
|
// check if there is enough memory to create the EKF-GSF object
|
|
if (dal.available_memory() < sizeof(EKFGSF_yaw) + 1024) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "EKF2 IMU%u GSF: not enough memory",(unsigned)imu_index);
|
|
return false;
|
|
}
|
|
|
|
// try to instantiate
|
|
yawEstimator = new EKFGSF_yaw();
|
|
if (yawEstimator == nullptr) {
|
|
GCS_SEND_TEXT(MAV_SEVERITY_CRITICAL, "EKF2 IMU%uGSF: allocation failed",(unsigned)imu_index);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/********************************************************
|
|
* INIT FUNCTIONS *
|
|
********************************************************/
|
|
|
|
// Use a function call rather than a constructor to initialise variables because it enables the filter to be re-started in flight if necessary.
|
|
void NavEKF2_core::InitialiseVariables()
|
|
{
|
|
// calculate the nominal filter update rate
|
|
const auto &ins = dal.ins();
|
|
localFilterTimeStep_ms = (uint8_t)(1000*ins.get_loop_delta_t());
|
|
localFilterTimeStep_ms = MAX(localFilterTimeStep_ms,10);
|
|
|
|
// initialise time stamps
|
|
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
|
|
prevTasStep_ms = imuSampleTime_ms;
|
|
prevBetaStep_ms = imuSampleTime_ms;
|
|
lastBaroReceived_ms = imuSampleTime_ms;
|
|
lastVelPassTime_ms = 0;
|
|
lastPosPassTime_ms = 0;
|
|
lastHgtPassTime_ms = 0;
|
|
lastTasPassTime_ms = 0;
|
|
lastYawTime_ms = imuSampleTime_ms;
|
|
lastTimeGpsReceived_ms = 0;
|
|
secondLastGpsTime_ms = 0;
|
|
lastDecayTime_ms = imuSampleTime_ms;
|
|
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
|
flowValidMeaTime_ms = imuSampleTime_ms;
|
|
rngValidMeaTime_ms = imuSampleTime_ms;
|
|
flowMeaTime_ms = 0;
|
|
prevFlowFuseTime_ms = 0;
|
|
gndHgtValidTime_ms = 0;
|
|
ekfStartTime_ms = imuSampleTime_ms;
|
|
lastGpsVelFail_ms = 0;
|
|
lastGpsVelPass_ms = 0;
|
|
lastGpsAidBadTime_ms = 0;
|
|
timeTasReceived_ms = 0;
|
|
lastPreAlignGpsCheckTime_ms = imuSampleTime_ms;
|
|
lastPosReset_ms = 0;
|
|
lastVelReset_ms = 0;
|
|
lastPosResetD_ms = 0;
|
|
lastRngMeasTime_ms = 0;
|
|
|
|
// initialise other variables
|
|
gpsNoiseScaler = 1.0f;
|
|
hgtTimeout = true;
|
|
tasTimeout = true;
|
|
badIMUdata = false;
|
|
dtIMUavg = 0.0025f;
|
|
dtEkfAvg = EKF_TARGET_DT;
|
|
dt = 0;
|
|
velDotNEDfilt.zero();
|
|
lastKnownPositionNE.zero();
|
|
prevTnb.zero();
|
|
memset(&P[0][0], 0, sizeof(P));
|
|
memset(&KH[0][0], 0, sizeof(KH));
|
|
memset(&KHP[0][0], 0, sizeof(KHP));
|
|
memset(&nextP[0][0], 0, sizeof(nextP));
|
|
flowDataValid = false;
|
|
rangeDataToFuse = false;
|
|
Popt = 0.0f;
|
|
terrainState = 0.0f;
|
|
prevPosN = stateStruct.position.x;
|
|
prevPosE = stateStruct.position.y;
|
|
inhibitGndState = false;
|
|
flowGyroBias.x = 0;
|
|
flowGyroBias.y = 0;
|
|
PV_AidingMode = AID_NONE;
|
|
PV_AidingModePrev = AID_NONE;
|
|
posTimeout = true;
|
|
velTimeout = true;
|
|
memset(&faultStatus, 0, sizeof(faultStatus));
|
|
hgtRate = 0.0f;
|
|
mag_state.q0 = 1;
|
|
mag_state.DCM.identity();
|
|
onGround = true;
|
|
prevOnGround = true;
|
|
inFlight = false;
|
|
prevInFlight = false;
|
|
manoeuvring = false;
|
|
inhibitWindStates = true;
|
|
gndOffsetValid = false;
|
|
validOrigin = false;
|
|
takeoffExpectedSet_ms = 0;
|
|
expectGndEffectTakeoff = false;
|
|
touchdownExpectedSet_ms = 0;
|
|
expectGndEffectTouchdown = false;
|
|
gpsSpdAccuracy = 0.0f;
|
|
gpsPosAccuracy = 0.0f;
|
|
gpsHgtAccuracy = 0.0f;
|
|
baroHgtOffset = 0.0f;
|
|
yawResetAngle = 0.0f;
|
|
lastYawReset_ms = 0;
|
|
tiltErrFilt = 1.0f;
|
|
tiltAlignComplete = false;
|
|
stateIndexLim = 23;
|
|
delAngCorrection.zero();
|
|
velErrintegral.zero();
|
|
posErrintegral.zero();
|
|
gpsGoodToAlign = false;
|
|
gpsNotAvailable = true;
|
|
motorsArmed = false;
|
|
prevMotorsArmed = false;
|
|
memset(&gpsCheckStatus, 0, sizeof(gpsCheckStatus));
|
|
gpsSpdAccPass = false;
|
|
ekfInnovationsPass = false;
|
|
sAccFilterState1 = 0.0f;
|
|
sAccFilterState2 = 0.0f;
|
|
lastGpsCheckTime_ms = 0;
|
|
lastInnovPassTime_ms = 0;
|
|
lastInnovFailTime_ms = 0;
|
|
gpsAccuracyGood = false;
|
|
gpsloc_prev = {};
|
|
gpsDriftNE = 0.0f;
|
|
gpsVertVelFilt = 0.0f;
|
|
gpsHorizVelFilt = 0.0f;
|
|
memset(&statesArray, 0, sizeof(statesArray));
|
|
memset(&vertCompFiltState, 0, sizeof(vertCompFiltState));
|
|
posVelFusionDelayed = false;
|
|
optFlowFusionDelayed = false;
|
|
airSpdFusionDelayed = false;
|
|
sideSlipFusionDelayed = false;
|
|
posResetNE.zero();
|
|
velResetNE.zero();
|
|
posResetD = 0.0f;
|
|
hgtInnovFiltState = 0.0f;
|
|
|
|
imuDataDownSampledNew.delAng.zero();
|
|
imuDataDownSampledNew.delVel.zero();
|
|
imuDataDownSampledNew.delAngDT = 0.0f;
|
|
imuDataDownSampledNew.delVelDT = 0.0f;
|
|
runUpdates = false;
|
|
framesSincePredict = 0;
|
|
gpsYawResetRequest = false;
|
|
quatAtLastMagReset = stateStruct.quat;
|
|
delAngBiasLearned = false;
|
|
memset(&filterStatus, 0, sizeof(filterStatus));
|
|
gpsInhibit = false;
|
|
activeHgtSource = 0;
|
|
memset(&rngMeasIndex, 0, sizeof(rngMeasIndex));
|
|
memset(&storedRngMeasTime_ms, 0, sizeof(storedRngMeasTime_ms));
|
|
memset(&storedRngMeas, 0, sizeof(storedRngMeas));
|
|
terrainHgtStable = true;
|
|
ekfOriginHgtVar = 0.0f;
|
|
ekfGpsRefHgt = 0.0;
|
|
velOffsetNED.zero();
|
|
posOffsetNED.zero();
|
|
memset(&velPosObs, 0, sizeof(velPosObs));
|
|
|
|
// range beacon fusion variables
|
|
memset((void *)&rngBcnDataNew, 0, sizeof(rngBcnDataNew));
|
|
memset((void *)&rngBcnDataDelayed, 0, sizeof(rngBcnDataDelayed));
|
|
lastRngBcnPassTime_ms = 0;
|
|
rngBcnTestRatio = 0.0f;
|
|
rngBcnHealth = false;
|
|
rngBcnTimeout = true;
|
|
varInnovRngBcn = 0.0f;
|
|
innovRngBcn = 0.0f;
|
|
memset(&lastTimeRngBcn_ms, 0, sizeof(lastTimeRngBcn_ms));
|
|
rngBcnDataToFuse = false;
|
|
beaconVehiclePosNED.zero();
|
|
beaconVehiclePosErr = 1.0f;
|
|
rngBcnLast3DmeasTime_ms = 0;
|
|
rngBcnGoodToAlign = false;
|
|
lastRngBcnChecked = 0;
|
|
receiverPos.zero();
|
|
memset(&receiverPosCov, 0, sizeof(receiverPosCov));
|
|
rngBcnAlignmentStarted = false;
|
|
rngBcnAlignmentCompleted = false;
|
|
lastBeaconIndex = 0;
|
|
rngBcnPosSum.zero();
|
|
numBcnMeas = 0;
|
|
rngSum = 0.0f;
|
|
N_beacons = 0;
|
|
maxBcnPosD = 0.0f;
|
|
minBcnPosD = 0.0f;
|
|
bcnPosOffset = 0.0f;
|
|
bcnPosOffsetMax = 0.0f;
|
|
bcnPosOffsetMaxVar = 0.0f;
|
|
OffsetMaxInnovFilt = 0.0f;
|
|
bcnPosOffsetMin = 0.0f;
|
|
bcnPosOffsetMinVar = 0.0f;
|
|
OffsetMinInnovFilt = 0.0f;
|
|
rngBcnFuseDataReportIndex = 0;
|
|
memset(&rngBcnFusionReport, 0, sizeof(rngBcnFusionReport));
|
|
last_gps_idx = 0;
|
|
|
|
// external nav data fusion
|
|
memset((void *)&extNavDataNew, 0, sizeof(extNavDataNew));
|
|
memset((void *)&extNavDataDelayed, 0, sizeof(extNavDataDelayed));
|
|
extNavDataToFuse = false;
|
|
extNavMeasTime_ms = 0;
|
|
extNavLastPosResetTime_ms = 0;
|
|
extNavUsedForYaw = false;
|
|
extNavUsedForPos = false;
|
|
extNavYawResetRequest = false;
|
|
|
|
extNavVelNew = {};
|
|
extNavVelDelayed = {};
|
|
extNavVelToFuse = false;
|
|
extNavVelMeasTime_ms = 0;
|
|
useExtNavVel = false;
|
|
|
|
// zero data buffers
|
|
storedIMU.reset();
|
|
storedGPS.reset();
|
|
storedBaro.reset();
|
|
storedTAS.reset();
|
|
storedRange.reset();
|
|
storedOutput.reset();
|
|
storedRangeBeacon.reset();
|
|
storedExtNav.reset();
|
|
storedExtNavVel.reset();
|
|
|
|
// now init mag variables
|
|
yawAlignComplete = false;
|
|
have_table_earth_field = false;
|
|
|
|
// initialise pre-arm message
|
|
dal.snprintf(prearm_fail_string, sizeof(prearm_fail_string), "EKF2 still initialising");
|
|
|
|
InitialiseVariablesMag();
|
|
|
|
// emergency reset of yaw to EKFGSF estimate
|
|
EKFGSF_yaw_reset_ms = 0;
|
|
EKFGSF_yaw_reset_request_ms = 0;
|
|
EKFGSF_yaw_reset_count = 0;
|
|
EKFGSF_run_filterbank = false;
|
|
}
|
|
|
|
|
|
/*
|
|
separate out the mag reset so it can be used when compass learning completes
|
|
*/
|
|
void NavEKF2_core::InitialiseVariablesMag()
|
|
{
|
|
lastHealthyMagTime_ms = imuSampleTime_ms;
|
|
lastMagUpdate_us = 0;
|
|
magYawResetTimer_ms = imuSampleTime_ms;
|
|
magTimeout = false;
|
|
allMagSensorsFailed = false;
|
|
badMagYaw = false;
|
|
finalInflightYawInit = false;
|
|
finalInflightMagInit = false;
|
|
|
|
inhibitMagStates = true;
|
|
|
|
magSelectIndex = 0;
|
|
lastMagOffsetsValid = false;
|
|
magStateResetRequest = false;
|
|
magStateInitComplete = false;
|
|
magYawResetRequest = false;
|
|
|
|
posDownAtLastMagReset = stateStruct.position.z;
|
|
yawInnovAtLastMagReset = 0.0f;
|
|
magFieldLearned = false;
|
|
|
|
storedMag.reset();
|
|
}
|
|
|
|
// Initialise the states from accelerometer and magnetometer data (if present)
|
|
// This method can only be used when the vehicle is static
|
|
bool NavEKF2_core::InitialiseFilterBootstrap(void)
|
|
{
|
|
// If we are a plane and don't have GPS lock then don't initialise
|
|
if (assume_zero_sideslip() && dal.gps().status(dal.gps().primary_sensor()) < AP_DAL_GPS::GPS_OK_FIX_3D) {
|
|
dal.snprintf(prearm_fail_string,
|
|
sizeof(prearm_fail_string),
|
|
"EKF2 init failure: No GPS lock");
|
|
statesInitialised = false;
|
|
return false;
|
|
}
|
|
|
|
if (statesInitialised) {
|
|
// we are initialised, but we don't return true until the IMU
|
|
// buffer has been filled. This prevents a timing
|
|
// vulnerability with a pause in IMU data during filter startup
|
|
readIMUData();
|
|
readMagData();
|
|
readGpsData();
|
|
readBaroData();
|
|
return storedIMU.is_filled();
|
|
}
|
|
|
|
// set re-used variables to zero
|
|
InitialiseVariables();
|
|
|
|
const auto &ins = dal.ins();
|
|
|
|
// Initialise IMU data
|
|
dtIMUavg = ins.get_loop_delta_t();
|
|
readIMUData();
|
|
storedIMU.reset_history(imuDataNew);
|
|
imuDataDelayed = imuDataNew;
|
|
|
|
// acceleration vector in XYZ body axes measured by the IMU (m/s^2)
|
|
Vector3f initAccVec;
|
|
|
|
// TODO we should average accel readings over several cycles
|
|
initAccVec = ins.get_accel(accel_index_active);
|
|
|
|
// read the magnetometer data
|
|
readMagData();
|
|
|
|
// normalise the acceleration vector
|
|
float pitch=0, roll=0;
|
|
if (initAccVec.length() > 0.001f) {
|
|
initAccVec.normalize();
|
|
|
|
// calculate initial pitch angle
|
|
pitch = asinf(initAccVec.x);
|
|
|
|
// calculate initial roll angle
|
|
roll = atan2f(-initAccVec.y , -initAccVec.z);
|
|
}
|
|
|
|
// calculate initial roll and pitch orientation
|
|
stateStruct.quat.from_euler(roll, pitch, 0.0f);
|
|
|
|
// initialise dynamic states
|
|
stateStruct.velocity.zero();
|
|
stateStruct.position.zero();
|
|
stateStruct.angErr.zero();
|
|
|
|
// initialise static process model states
|
|
stateStruct.gyro_bias.zero();
|
|
stateStruct.gyro_scale.x = 1.0f;
|
|
stateStruct.gyro_scale.y = 1.0f;
|
|
stateStruct.gyro_scale.z = 1.0f;
|
|
stateStruct.accel_zbias = 0.0f;
|
|
stateStruct.wind_vel.zero();
|
|
stateStruct.earth_magfield.zero();
|
|
stateStruct.body_magfield.zero();
|
|
|
|
// read the GPS and set the position and velocity states
|
|
readGpsData();
|
|
ResetVelocity();
|
|
ResetPosition();
|
|
|
|
// read the barometer and set the height state
|
|
readBaroData();
|
|
ResetHeight();
|
|
|
|
// define Earth rotation vector in the NED navigation frame
|
|
calcEarthRateNED(earthRateNED, dal.get_home().lat);
|
|
|
|
// initialise the covariance matrix
|
|
CovarianceInit();
|
|
|
|
// reset output states
|
|
StoreOutputReset();
|
|
|
|
// set to true now that states have be initialised
|
|
statesInitialised = true;
|
|
|
|
// reset inactive biases
|
|
for (uint8_t i=0; i<INS_MAX_INSTANCES; i++) {
|
|
inactiveBias[i].gyro_bias.zero();
|
|
inactiveBias[i].accel_zbias = 0;
|
|
inactiveBias[i].gyro_scale.x = 1;
|
|
inactiveBias[i].gyro_scale.y = 1;
|
|
inactiveBias[i].gyro_scale.z = 1;
|
|
}
|
|
|
|
// we initially return false to wait for the IMU buffer to fill
|
|
return false;
|
|
}
|
|
|
|
// initialise the covariance matrix
|
|
void NavEKF2_core::CovarianceInit()
|
|
{
|
|
// zero the matrix
|
|
memset(&P[0][0], 0, sizeof(P));
|
|
|
|
// attitude error
|
|
P[0][0] = 0.1f;
|
|
P[1][1] = 0.1f;
|
|
P[2][2] = 0.1f;
|
|
// velocities
|
|
P[3][3] = sq(frontend->_gpsHorizVelNoise);
|
|
P[4][4] = P[3][3];
|
|
P[5][5] = sq(frontend->_gpsVertVelNoise);
|
|
// positions
|
|
P[6][6] = sq(frontend->_gpsHorizPosNoise);
|
|
P[7][7] = P[6][6];
|
|
P[8][8] = sq(frontend->_baroAltNoise);
|
|
// gyro delta angle biases
|
|
P[9][9] = sq(radians(InitialGyroBiasUncertainty() * dtEkfAvg));
|
|
P[10][10] = P[9][9];
|
|
P[11][11] = P[9][9];
|
|
// gyro scale factor biases
|
|
P[12][12] = sq(1e-3);
|
|
P[13][13] = P[12][12];
|
|
P[14][14] = P[12][12];
|
|
// Z delta velocity bias
|
|
P[15][15] = sq(INIT_ACCEL_BIAS_UNCERTAINTY * dtEkfAvg);
|
|
// earth magnetic field
|
|
P[16][16] = 0.0f;
|
|
P[17][17] = P[16][16];
|
|
P[18][18] = P[16][16];
|
|
// body magnetic field
|
|
P[19][19] = 0.0f;
|
|
P[20][20] = P[19][19];
|
|
P[21][21] = P[19][19];
|
|
// wind velocities
|
|
P[22][22] = 0.0f;
|
|
P[23][23] = P[22][22];
|
|
|
|
// optical flow ground height covariance
|
|
Popt = 0.25f;
|
|
}
|
|
|
|
/********************************************************
|
|
* UPDATE FUNCTIONS *
|
|
********************************************************/
|
|
// Update Filter States - this should be called whenever new IMU data is available
|
|
void NavEKF2_core::UpdateFilter(bool predict)
|
|
{
|
|
// Set the flag to indicate to the filter that the front-end has given permission for a new state prediction cycle to be started
|
|
startPredictEnabled = predict;
|
|
|
|
// don't run filter updates if states have not been initialised
|
|
if (!statesInitialised) {
|
|
return;
|
|
}
|
|
|
|
// start the timer used for load measurement
|
|
#if ENABLE_EKF_TIMING
|
|
void *istate = hal.scheduler->disable_interrupts_save();
|
|
static uint32_t timing_start_us;
|
|
timing_start_us = dal.micros();
|
|
#endif
|
|
|
|
fill_scratch_variables();
|
|
|
|
// TODO - in-flight restart method
|
|
|
|
//get starting time for update step
|
|
imuSampleTime_ms = frontend->imuSampleTime_us / 1000;
|
|
|
|
// Check arm status and perform required checks and mode changes
|
|
controlFilterModes();
|
|
|
|
// read IMU data as delta angles and velocities
|
|
readIMUData();
|
|
|
|
// Run the EKF equations to estimate at the fusion time horizon if new IMU data is available in the buffer
|
|
if (runUpdates) {
|
|
// Predict states using IMU data from the delayed time horizon
|
|
UpdateStrapdownEquationsNED();
|
|
|
|
// Predict the covariance growth
|
|
CovariancePrediction();
|
|
|
|
// Run the IMU prediction step for the GSF yaw estimator algorithm
|
|
// using IMU and optionally true airspeed data.
|
|
// Must be run before SelectMagFusion() to provide an up to date yaw estimate
|
|
runYawEstimatorPrediction();
|
|
|
|
// Update states using magnetometer data
|
|
SelectMagFusion();
|
|
|
|
// Update states using GPS and altimeter data
|
|
SelectVelPosFusion();
|
|
|
|
// Run the GPS velocity correction step for the GSF yaw estimator algorithm
|
|
// and use the yaw estimate to reset the main EKF yaw if requested
|
|
// Muat be run after SelectVelPosFusion() so that fresh GPS data is available
|
|
runYawEstimatorCorrection();
|
|
|
|
// Update states using range beacon data
|
|
SelectRngBcnFusion();
|
|
|
|
// Update states using optical flow data
|
|
SelectFlowFusion();
|
|
|
|
// Update states using airspeed data
|
|
SelectTasFusion();
|
|
|
|
// Update states using sideslip constraint assumption for fly-forward vehicles
|
|
SelectBetaFusion();
|
|
|
|
// Update the filter status
|
|
updateFilterStatus();
|
|
}
|
|
|
|
// Wind output forward from the fusion to output time horizon
|
|
calcOutputStates();
|
|
|
|
// stop the timer used for load measurement
|
|
#if ENABLE_EKF_TIMING
|
|
static uint32_t total_us;
|
|
static uint32_t timing_counter;
|
|
total_us += dal.micros() - timing_start_us;
|
|
if (timing_counter++ == 4000) {
|
|
hal.console->printf("ekf2 avg %.2f us\n", total_us / float(timing_counter));
|
|
total_us = 0;
|
|
timing_counter = 0;
|
|
}
|
|
hal.scheduler->restore_interrupts(istate);
|
|
#endif
|
|
|
|
/*
|
|
this is a check to cope with a vehicle sitting idle on the
|
|
ground and getting over-confident of the state. The symptoms
|
|
would be "gyros still settling" when the user tries to arm. In
|
|
that state the EKF can't recover, so we do a hard reset and let
|
|
it try again.
|
|
*/
|
|
if (filterStatus.value != 0) {
|
|
last_filter_ok_ms = dal.millis();
|
|
}
|
|
if (filterStatus.value == 0 &&
|
|
last_filter_ok_ms != 0 &&
|
|
dal.millis() - last_filter_ok_ms > 5000 &&
|
|
!dal.get_armed()) {
|
|
// we've been unhealthy for 5 seconds after being healthy, reset the filter
|
|
GCS_SEND_TEXT(MAV_SEVERITY_WARNING, "EKF2 IMU%u forced reset",(unsigned)imu_index);
|
|
last_filter_ok_ms = 0;
|
|
statesInitialised = false;
|
|
InitialiseFilterBootstrap();
|
|
}
|
|
|
|
}
|
|
|
|
void NavEKF2_core::correctDeltaAngle(Vector3f &delAng, float delAngDT, uint8_t gyro_index)
|
|
{
|
|
delAng.x = delAng.x * stateStruct.gyro_scale.x;
|
|
delAng.y = delAng.y * stateStruct.gyro_scale.y;
|
|
delAng.z = delAng.z * stateStruct.gyro_scale.z;
|
|
delAng -= inactiveBias[gyro_index].gyro_bias * (delAngDT / dtEkfAvg);
|
|
}
|
|
|
|
void NavEKF2_core::correctDeltaVelocity(Vector3f &delVel, float delVelDT, uint8_t accel_index)
|
|
{
|
|
delVel.z -= inactiveBias[accel_index].accel_zbias * (delVelDT / dtEkfAvg);
|
|
}
|
|
|
|
/*
|
|
* Update the quaternion, velocity and position states using delayed IMU measurements
|
|
* because the EKF is running on a delayed time horizon. Note that the quaternion is
|
|
* not used by the EKF equations, which instead estimate the error in the attitude of
|
|
* the vehicle when each observation is fused. This attitude error is then used to correct
|
|
* the quaternion.
|
|
*/
|
|
void NavEKF2_core::UpdateStrapdownEquationsNED()
|
|
{
|
|
// update the quaternion states by rotating from the previous attitude through
|
|
// the delta angle rotation quaternion and normalise
|
|
// apply correction for earth's rotation rate
|
|
// % * - and + operators have been overloaded
|
|
stateStruct.quat.rotate(delAngCorrected - prevTnb * earthRateNED*imuDataDelayed.delAngDT);
|
|
stateStruct.quat.normalize();
|
|
|
|
// transform body delta velocities to delta velocities in the nav frame
|
|
// use the nav frame from previous time step as the delta velocities
|
|
// have been rotated into that frame
|
|
// * and + operators have been overloaded
|
|
Vector3f delVelNav; // delta velocity vector in earth axes
|
|
delVelNav = prevTnb.mul_transpose(delVelCorrected);
|
|
delVelNav.z += GRAVITY_MSS*imuDataDelayed.delVelDT;
|
|
|
|
// calculate the body to nav cosine matrix
|
|
stateStruct.quat.inverse().rotation_matrix(prevTnb);
|
|
|
|
// calculate the rate of change of velocity (used for launch detect and other functions)
|
|
velDotNED = delVelNav / imuDataDelayed.delVelDT;
|
|
|
|
// apply a first order lowpass filter
|
|
velDotNEDfilt = velDotNED * 0.05f + velDotNEDfilt * 0.95f;
|
|
|
|
// calculate a magnitude of the filtered nav acceleration (required for GPS
|
|
// variance estimation)
|
|
accNavMag = velDotNEDfilt.length();
|
|
accNavMagHoriz = norm(velDotNEDfilt.x , velDotNEDfilt.y);
|
|
|
|
// if we are not aiding, then limit the horizontal magnitude of acceleration
|
|
// to prevent large manoeuvre transients disturbing the attitude
|
|
if ((PV_AidingMode == AID_NONE) && (accNavMagHoriz > 5.0f)) {
|
|
float gain = 5.0f/accNavMagHoriz;
|
|
delVelNav.x *= gain;
|
|
delVelNav.y *= gain;
|
|
}
|
|
|
|
// save velocity for use in trapezoidal integration for position calcuation
|
|
Vector3f lastVelocity = stateStruct.velocity;
|
|
|
|
// sum delta velocities to get velocity
|
|
stateStruct.velocity += delVelNav;
|
|
|
|
// apply a trapezoidal integration to velocities to calculate position
|
|
stateStruct.position += (stateStruct.velocity + lastVelocity) * (imuDataDelayed.delVelDT*0.5f);
|
|
|
|
// accumulate the bias delta angle and time since last reset by an OF measurement arrival
|
|
delAngBodyOF += delAngCorrected;
|
|
delTimeOF += imuDataDelayed.delAngDT;
|
|
|
|
// limit states to protect against divergence
|
|
ConstrainStates();
|
|
}
|
|
|
|
/*
|
|
* Propagate PVA solution forward from the fusion time horizon to the current time horizon
|
|
* using simple observer which performs two functions:
|
|
* 1) Corrects for the delayed time horizon used by the EKF.
|
|
* 2) Applies a LPF to state corrections to prevent 'stepping' in states due to measurement
|
|
* fusion introducing unwanted noise into the control loops.
|
|
* The inspiration for using a complementary filter to correct for time delays in the EKF
|
|
* is based on the work by A Khosravian.
|
|
*
|
|
* "Recursive Attitude Estimation in the Presence of Multi-rate and Multi-delay Vector Measurements"
|
|
* A Khosravian, J Trumpf, R Mahony, T Hamel, Australian National University
|
|
*/
|
|
void NavEKF2_core::calcOutputStates()
|
|
{
|
|
// apply corrections to the IMU data
|
|
Vector3f delAngNewCorrected = imuDataNew.delAng;
|
|
Vector3f delVelNewCorrected = imuDataNew.delVel;
|
|
correctDeltaAngle(delAngNewCorrected, imuDataNew.delAngDT, imuDataNew.gyro_index);
|
|
correctDeltaVelocity(delVelNewCorrected, imuDataNew.delVelDT, imuDataNew.accel_index);
|
|
|
|
// apply corections to track EKF solution
|
|
Vector3f delAng = delAngNewCorrected + delAngCorrection;
|
|
|
|
// convert the rotation vector to its equivalent quaternion
|
|
Quaternion deltaQuat;
|
|
deltaQuat.from_axis_angle(delAng);
|
|
|
|
// update the quaternion states by rotating from the previous attitude through
|
|
// the delta angle rotation quaternion and normalise
|
|
outputDataNew.quat *= deltaQuat;
|
|
outputDataNew.quat.normalize();
|
|
|
|
// calculate the body to nav cosine matrix
|
|
Matrix3f Tbn_temp;
|
|
outputDataNew.quat.rotation_matrix(Tbn_temp);
|
|
|
|
// transform body delta velocities to delta velocities in the nav frame
|
|
Vector3f delVelNav = Tbn_temp*delVelNewCorrected;
|
|
delVelNav.z += GRAVITY_MSS*imuDataNew.delVelDT;
|
|
|
|
// save velocity for use in trapezoidal integration for position calcuation
|
|
Vector3f lastVelocity = outputDataNew.velocity;
|
|
|
|
// sum delta velocities to get velocity
|
|
outputDataNew.velocity += delVelNav;
|
|
|
|
// Implement third order complementary filter for height and height rate
|
|
// Reference Paper :
|
|
// Optimizing the Gains of the Baro-Inertial Vertical Channel
|
|
// Widnall W.S, Sinha P.K,
|
|
// AIAA Journal of Guidance and Control, 78-1307R
|
|
|
|
// Perform filter calculation using backwards Euler integration
|
|
// Coefficients selected to place all three filter poles at omega
|
|
const float CompFiltOmega = M_2PI * constrain_float(frontend->_hrt_filt_freq, 0.1f, 30.0f);
|
|
float omega2 = CompFiltOmega * CompFiltOmega;
|
|
float pos_err = outputDataNew.position.z - vertCompFiltState.pos;
|
|
float integ1_input = pos_err * omega2 * CompFiltOmega * imuDataNew.delVelDT;
|
|
vertCompFiltState.acc += integ1_input;
|
|
float integ2_input = delVelNav.z + (vertCompFiltState.acc + pos_err * omega2 * 3.0f) * imuDataNew.delVelDT;
|
|
vertCompFiltState.vel += integ2_input;
|
|
float integ3_input = (vertCompFiltState.vel + pos_err * CompFiltOmega * 3.0f) * imuDataNew.delVelDT;
|
|
vertCompFiltState.pos += integ3_input;
|
|
|
|
// apply a trapezoidal integration to velocities to calculate position
|
|
outputDataNew.position += (outputDataNew.velocity + lastVelocity) * (imuDataNew.delVelDT*0.5f);
|
|
|
|
// If the IMU accelerometer is offset from the body frame origin, then calculate corrections
|
|
// that can be added to the EKF velocity and position outputs so that they represent the velocity
|
|
// and position of the body frame origin.
|
|
// Note the * operator has been overloaded to operate as a dot product
|
|
if (!accelPosOffset.is_zero()) {
|
|
// calculate the average angular rate across the last IMU update
|
|
// note delAngDT is prevented from being zero in readIMUData()
|
|
Vector3f angRate = imuDataNew.delAng * (1.0f/imuDataNew.delAngDT);
|
|
|
|
// Calculate the velocity of the body frame origin relative to the IMU in body frame
|
|
// and rotate into earth frame. Note % operator has been overloaded to perform a cross product
|
|
Vector3f velBodyRelIMU = angRate % (- accelPosOffset);
|
|
velOffsetNED = Tbn_temp * velBodyRelIMU;
|
|
|
|
// calculate the earth frame position of the body frame origin relative to the IMU
|
|
posOffsetNED = Tbn_temp * (- accelPosOffset);
|
|
} else {
|
|
velOffsetNED.zero();
|
|
posOffsetNED.zero();
|
|
}
|
|
|
|
// store INS states in a ring buffer that with the same length and time coordinates as the IMU data buffer
|
|
if (runUpdates) {
|
|
// store the states at the output time horizon
|
|
storedOutput[storedIMU.get_youngest_index()] = outputDataNew;
|
|
|
|
// recall the states from the fusion time horizon
|
|
outputDataDelayed = storedOutput[storedIMU.get_oldest_index()];
|
|
|
|
// compare quaternion data with EKF quaternion at the fusion time horizon and calculate correction
|
|
|
|
// divide the demanded quaternion by the estimated to get the error
|
|
Quaternion quatErr = stateStruct.quat / outputDataDelayed.quat;
|
|
|
|
// Convert to a delta rotation using a small angle approximation
|
|
quatErr.normalize();
|
|
Vector3f deltaAngErr;
|
|
float scaler;
|
|
if (quatErr[0] >= 0.0f) {
|
|
scaler = 2.0f;
|
|
} else {
|
|
scaler = -2.0f;
|
|
}
|
|
deltaAngErr.x = scaler * quatErr[1];
|
|
deltaAngErr.y = scaler * quatErr[2];
|
|
deltaAngErr.z = scaler * quatErr[3];
|
|
|
|
// calculate a gain that provides tight tracking of the estimator states and
|
|
// adjust for changes in time delay to maintain consistent damping ratio of ~0.7
|
|
float timeDelay = 1e-3f * (float)(imuDataNew.time_ms - imuDataDelayed.time_ms);
|
|
timeDelay = fmaxf(timeDelay, dtIMUavg);
|
|
float errorGain = 0.5f / timeDelay;
|
|
|
|
// calculate a corrrection to the delta angle
|
|
// that will cause the INS to track the EKF quaternions
|
|
delAngCorrection = deltaAngErr * errorGain * dtIMUavg;
|
|
|
|
// calculate velocity and position tracking errors
|
|
Vector3f velErr = (stateStruct.velocity - outputDataDelayed.velocity);
|
|
Vector3f posErr = (stateStruct.position - outputDataDelayed.position);
|
|
|
|
// collect magnitude tracking error for diagnostics
|
|
outputTrackError.x = deltaAngErr.length();
|
|
outputTrackError.y = velErr.length();
|
|
outputTrackError.z = posErr.length();
|
|
|
|
// convert user specified time constant from centi-seconds to seconds
|
|
float tauPosVel = constrain_float(0.01f*(float)frontend->_tauVelPosOutput, 0.1f, 0.5f);
|
|
|
|
// calculate a gain to track the EKF position states with the specified time constant
|
|
float velPosGain = dtEkfAvg / constrain_float(tauPosVel, dtEkfAvg, 10.0f);
|
|
|
|
// use a PI feedback to calculate a correction that will be applied to the output state history
|
|
posErrintegral += posErr;
|
|
velErrintegral += velErr;
|
|
Vector3f velCorrection = velErr * velPosGain + velErrintegral * sq(velPosGain) * 0.1f;
|
|
Vector3f posCorrection = posErr * velPosGain + posErrintegral * sq(velPosGain) * 0.1f;
|
|
|
|
// loop through the output filter state history and apply the corrections to the velocity and position states
|
|
// this method is too expensive to use for the attitude states due to the quaternion operations required
|
|
// but does not introduce a time delay in the 'correction loop' and allows smaller tracking time constants
|
|
// to be used
|
|
output_elements outputStates;
|
|
for (unsigned index=0; index < imu_buffer_length; index++) {
|
|
outputStates = storedOutput[index];
|
|
|
|
// a constant velocity correction is applied
|
|
outputStates.velocity += velCorrection;
|
|
|
|
// a constant position correction is applied
|
|
outputStates.position += posCorrection;
|
|
|
|
// push the updated data to the buffer
|
|
storedOutput[index] = outputStates;
|
|
}
|
|
|
|
// update output state to corrected values
|
|
outputDataNew = storedOutput[storedIMU.get_youngest_index()];
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the predicted state covariance matrix using algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
*/
|
|
void NavEKF2_core::CovariancePrediction()
|
|
{
|
|
float windVelSigma; // wind velocity 1-sigma process noise - m/s
|
|
float dAngBiasSigma;// delta angle bias 1-sigma process noise - rad/s
|
|
float dVelBiasSigma;// delta velocity bias 1-sigma process noise - m/s
|
|
float dAngScaleSigma;// delta angle scale factor 1-Sigma process noise
|
|
float magEarthSigma;// earth magnetic field 1-sigma process noise
|
|
float magBodySigma; // body magnetic field 1-sigma process noise
|
|
float daxNoise; // X axis delta angle noise variance rad^2
|
|
float dayNoise; // Y axis delta angle noise variance rad^2
|
|
float dazNoise; // Z axis delta angle noise variance rad^2
|
|
float dvxNoise; // X axis delta velocity variance noise (m/s)^2
|
|
float dvyNoise; // Y axis delta velocity variance noise (m/s)^2
|
|
float dvzNoise; // Z axis delta velocity variance noise (m/s)^2
|
|
float dvx; // X axis delta velocity (m/s)
|
|
float dvy; // Y axis delta velocity (m/s)
|
|
float dvz; // Z axis delta velocity (m/s)
|
|
float dax; // X axis delta angle (rad)
|
|
float day; // Y axis delta angle (rad)
|
|
float daz; // Z axis delta angle (rad)
|
|
float q0; // attitude quaternion
|
|
float q1; // attitude quaternion
|
|
float q2; // attitude quaternion
|
|
float q3; // attitude quaternion
|
|
float dax_b; // X axis delta angle measurement bias (rad)
|
|
float day_b; // Y axis delta angle measurement bias (rad)
|
|
float daz_b; // Z axis delta angle measurement bias (rad)
|
|
float dax_s; // X axis delta angle measurement scale factor
|
|
float day_s; // Y axis delta angle measurement scale factor
|
|
float daz_s; // Z axis delta angle measurement scale factor
|
|
float dvz_b; // Z axis delta velocity measurement bias (rad)
|
|
Vector25 SF;
|
|
Vector5 SG;
|
|
Vector8 SQ;
|
|
Vector24 processNoise;
|
|
|
|
// calculate covariance prediction process noise
|
|
// use filtered height rate to increase wind process noise when climbing or descending
|
|
// this allows for wind gradient effects.
|
|
// filter height rate using a 10 second time constant filter
|
|
dt = imuDataDelayed.delAngDT;
|
|
float alpha = 0.1f * dt;
|
|
hgtRate = hgtRate * (1.0f - alpha) - stateStruct.velocity.z * alpha;
|
|
|
|
// use filtered height rate to increase wind process noise when climbing or descending
|
|
// this allows for wind gradient effects.
|
|
windVelSigma = dt * constrain_float(frontend->_windVelProcessNoise, 0.0f, 1.0f) * (1.0f + constrain_float(frontend->_wndVarHgtRateScale, 0.0f, 1.0f) * fabsf(hgtRate));
|
|
dAngBiasSigma = sq(dt) * constrain_float(frontend->_gyroBiasProcessNoise, 0.0f, 1.0f);
|
|
dVelBiasSigma = sq(dt) * constrain_float(frontend->_accelBiasProcessNoise, 0.0f, 1.0f);
|
|
dAngScaleSigma = dt * constrain_float(frontend->_gyroScaleProcessNoise, 0.0f, 1.0f);
|
|
magEarthSigma = dt * constrain_float(frontend->_magEarthProcessNoise, 0.0f, 1.0f);
|
|
magBodySigma = dt * constrain_float(frontend->_magBodyProcessNoise, 0.0f, 1.0f);
|
|
for (uint8_t i= 0; i<=8; i++) processNoise[i] = 0.0f;
|
|
for (uint8_t i=9; i<=11; i++) processNoise[i] = dAngBiasSigma;
|
|
for (uint8_t i=12; i<=14; i++) processNoise[i] = dAngScaleSigma;
|
|
if (expectGndEffectTakeoff) {
|
|
processNoise[15] = 0.0f;
|
|
} else {
|
|
processNoise[15] = dVelBiasSigma;
|
|
}
|
|
for (uint8_t i=16; i<=18; i++) processNoise[i] = magEarthSigma;
|
|
for (uint8_t i=19; i<=21; i++) processNoise[i] = magBodySigma;
|
|
for (uint8_t i=22; i<=23; i++) processNoise[i] = windVelSigma;
|
|
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) processNoise[i] = sq(processNoise[i]);
|
|
|
|
// set variables used to calculate covariance growth
|
|
dvx = imuDataDelayed.delVel.x;
|
|
dvy = imuDataDelayed.delVel.y;
|
|
dvz = imuDataDelayed.delVel.z;
|
|
dax = imuDataDelayed.delAng.x;
|
|
day = imuDataDelayed.delAng.y;
|
|
daz = imuDataDelayed.delAng.z;
|
|
q0 = stateStruct.quat[0];
|
|
q1 = stateStruct.quat[1];
|
|
q2 = stateStruct.quat[2];
|
|
q3 = stateStruct.quat[3];
|
|
dax_b = stateStruct.gyro_bias.x;
|
|
day_b = stateStruct.gyro_bias.y;
|
|
daz_b = stateStruct.gyro_bias.z;
|
|
dax_s = stateStruct.gyro_scale.x;
|
|
day_s = stateStruct.gyro_scale.y;
|
|
daz_s = stateStruct.gyro_scale.z;
|
|
dvz_b = stateStruct.accel_zbias;
|
|
float _gyrNoise = constrain_float(frontend->_gyrNoise, 0.0f, 1.0f);
|
|
daxNoise = dayNoise = dazNoise = sq(dt*_gyrNoise);
|
|
float _accNoise = constrain_float(frontend->_accNoise, 0.0f, 10.0f);
|
|
dvxNoise = dvyNoise = dvzNoise = sq(dt*_accNoise);
|
|
|
|
// calculate the predicted covariance due to inertial sensor error propagation
|
|
// we calculate the upper diagonal and copy to take advantage of symmetry
|
|
SF[0] = daz_b/2 - (daz*daz_s)/2;
|
|
SF[1] = day_b/2 - (day*day_s)/2;
|
|
SF[2] = dax_b/2 - (dax*dax_s)/2;
|
|
SF[3] = q3/2 - (q0*SF[0])/2 + (q1*SF[1])/2 - (q2*SF[2])/2;
|
|
SF[4] = q0/2 - (q1*SF[2])/2 - (q2*SF[1])/2 + (q3*SF[0])/2;
|
|
SF[5] = q1/2 + (q0*SF[2])/2 - (q2*SF[0])/2 - (q3*SF[1])/2;
|
|
SF[6] = q3/2 + (q0*SF[0])/2 - (q1*SF[1])/2 - (q2*SF[2])/2;
|
|
SF[7] = q0/2 - (q1*SF[2])/2 + (q2*SF[1])/2 - (q3*SF[0])/2;
|
|
SF[8] = q0/2 + (q1*SF[2])/2 - (q2*SF[1])/2 - (q3*SF[0])/2;
|
|
SF[9] = q2/2 + (q0*SF[1])/2 + (q1*SF[0])/2 + (q3*SF[2])/2;
|
|
SF[10] = q2/2 - (q0*SF[1])/2 - (q1*SF[0])/2 + (q3*SF[2])/2;
|
|
SF[11] = q2/2 + (q0*SF[1])/2 - (q1*SF[0])/2 - (q3*SF[2])/2;
|
|
SF[12] = q1/2 + (q0*SF[2])/2 + (q2*SF[0])/2 + (q3*SF[1])/2;
|
|
SF[13] = q1/2 - (q0*SF[2])/2 + (q2*SF[0])/2 - (q3*SF[1])/2;
|
|
SF[14] = q3/2 + (q0*SF[0])/2 + (q1*SF[1])/2 + (q2*SF[2])/2;
|
|
SF[15] = - sq(q0) - sq(q1) - sq(q2) - sq(q3);
|
|
SF[16] = dvz_b - dvz;
|
|
SF[17] = dvx;
|
|
SF[18] = dvy;
|
|
SF[19] = sq(q2);
|
|
SF[20] = SF[19] - sq(q0) + sq(q1) - sq(q3);
|
|
SF[21] = SF[19] + sq(q0) - sq(q1) - sq(q3);
|
|
SF[22] = 2*q0*q1 - 2*q2*q3;
|
|
SF[23] = SF[19] - sq(q0) - sq(q1) + sq(q3);
|
|
SF[24] = 2*q1*q2;
|
|
|
|
SG[0] = - sq(q0) - sq(q1) - sq(q2) - sq(q3);
|
|
SG[1] = sq(q3);
|
|
SG[2] = sq(q2);
|
|
SG[3] = sq(q1);
|
|
SG[4] = sq(q0);
|
|
|
|
SQ[0] = - dvyNoise*(2*q0*q1 + 2*q2*q3)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvxNoise*(2*q0*q2 - 2*q1*q3)*(2*q0*q3 + 2*q1*q2);
|
|
SQ[1] = dvxNoise*(2*q0*q2 - 2*q1*q3)*(SG[1] + SG[2] - SG[3] - SG[4]) + dvzNoise*(2*q0*q2 + 2*q1*q3)*(SG[1] - SG[2] - SG[3] + SG[4]) - dvyNoise*(2*q0*q1 + 2*q2*q3)*(2*q0*q3 - 2*q1*q2);
|
|
SQ[2] = dvyNoise*(2*q0*q3 - 2*q1*q2)*(SG[1] - SG[2] + SG[3] - SG[4]) - dvxNoise*(2*q0*q3 + 2*q1*q2)*(SG[1] + SG[2] - SG[3] - SG[4]) - dvzNoise*(2*q0*q1 - 2*q2*q3)*(2*q0*q2 + 2*q1*q3);
|
|
SQ[3] = sq(SG[0]);
|
|
SQ[4] = 2*q2*q3;
|
|
SQ[5] = 2*q1*q3;
|
|
SQ[6] = 2*q1*q2;
|
|
SQ[7] = SG[4];
|
|
|
|
Vector23 SPP;
|
|
SPP[0] = SF[17]*(2*q0*q1 + 2*q2*q3) + SF[18]*(2*q0*q2 - 2*q1*q3);
|
|
SPP[1] = SF[18]*(2*q0*q2 + 2*q1*q3) + SF[16]*(SF[24] - 2*q0*q3);
|
|
SPP[2] = 2*q3*SF[8] + 2*q1*SF[11] - 2*q0*SF[14] - 2*q2*SF[13];
|
|
SPP[3] = 2*q1*SF[7] + 2*q2*SF[6] - 2*q0*SF[12] - 2*q3*SF[10];
|
|
SPP[4] = 2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12];
|
|
SPP[5] = 2*q0*SF[8] + 2*q2*SF[11] + 2*q1*SF[13] + 2*q3*SF[14];
|
|
SPP[6] = 2*q0*SF[7] + 2*q3*SF[6] + 2*q2*SF[10] + 2*q1*SF[12];
|
|
SPP[7] = SF[18]*SF[20] - SF[16]*(2*q0*q1 + 2*q2*q3);
|
|
SPP[8] = 2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9];
|
|
SPP[9] = 2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9];
|
|
SPP[10] = SF[17]*SF[20] + SF[16]*(2*q0*q2 - 2*q1*q3);
|
|
SPP[11] = SF[17]*SF[21] - SF[18]*(SF[24] + 2*q0*q3);
|
|
SPP[12] = SF[17]*SF[22] - SF[16]*(SF[24] + 2*q0*q3);
|
|
SPP[13] = 2*q0*SF[4] + 2*q1*SF[5] + 2*q3*SF[3] + 2*q2*SF[9];
|
|
SPP[14] = 2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13];
|
|
SPP[15] = SF[18]*SF[23] + SF[17]*(SF[24] - 2*q0*q3);
|
|
SPP[16] = daz*SF[19] + daz*sq(q0) + daz*sq(q1) + daz*sq(q3);
|
|
SPP[17] = day*SF[19] + day*sq(q0) + day*sq(q1) + day*sq(q3);
|
|
SPP[18] = dax*SF[19] + dax*sq(q0) + dax*sq(q1) + dax*sq(q3);
|
|
SPP[19] = SF[16]*SF[23] - SF[17]*(2*q0*q2 + 2*q1*q3);
|
|
SPP[20] = SF[16]*SF[21] - SF[18]*SF[22];
|
|
SPP[21] = 2*q0*q2 + 2*q1*q3;
|
|
SPP[22] = SF[15];
|
|
|
|
if (inhibitMagStates) {
|
|
zeroRows(P,16,21);
|
|
zeroCols(P,16,21);
|
|
} else if (inhibitWindStates) {
|
|
zeroRows(P,22,23);
|
|
zeroCols(P,22,23);
|
|
}
|
|
|
|
if (!inhibitMagStates && lastInhibitMagStates) {
|
|
// when starting 3D fusion we want to reset body mag variances
|
|
needMagBodyVarReset = true;
|
|
}
|
|
|
|
if (needMagBodyVarReset) {
|
|
// reset body mag variances
|
|
needMagBodyVarReset = false;
|
|
zeroCols(P,19,21);
|
|
zeroRows(P,19,21);
|
|
P[19][19] = sq(frontend->_magNoise);
|
|
P[20][20] = P[19][19];
|
|
P[21][21] = P[19][19];
|
|
}
|
|
|
|
lastInhibitMagStates = inhibitMagStates;
|
|
|
|
nextP[0][0] = daxNoise*SQ[3] + SPP[5]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[9][0]*SPP[22] + P[12][0]*SPP[18] + P[2][0]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) - SPP[4]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[9][1]*SPP[22] + P[12][1]*SPP[18] + P[2][1]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[8]*(P[0][2]*SPP[5] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18] - P[1][2]*(2*q0*SF[6] - 2*q3*SF[7] - 2*q1*SF[10] + 2*q2*SF[12])) + SPP[22]*(P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[9][9]*SPP[22] + P[12][9]*SPP[18] + P[2][9]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9])) + SPP[18]*(P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[9][12]*SPP[22] + P[12][12]*SPP[18] + P[2][12]*(2*q1*SF[3] - 2*q2*SF[4] - 2*q3*SF[5] + 2*q0*SF[9]));
|
|
nextP[0][1] = SPP[6]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) - SPP[2]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[22]*(P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18]) + SPP[17]*(P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18]) - (2*q0*SF[5] - 2*q1*SF[4] - 2*q2*SF[3] + 2*q3*SF[9])*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]);
|
|
nextP[1][1] = dayNoise*SQ[3] - SPP[2]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[6]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) - SPP[9]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[22]*(P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17]) + SPP[17]*(P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17]);
|
|
nextP[0][2] = SPP[13]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[3]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[22]*(P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18]) + SPP[16]*(P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]);
|
|
nextP[1][2] = SPP[13]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[3]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[22]*(P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17]) + SPP[16]*(P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17]) + (2*q2*SF[8] - 2*q0*SF[11] - 2*q1*SF[14] + 2*q3*SF[13])*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]);
|
|
nextP[2][2] = dazNoise*SQ[3] - SPP[3]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[14]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[13]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[22]*(P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16]) + SPP[16]*(P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16]);
|
|
nextP[0][3] = P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18] + SPP[1]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[15]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) - SPP[21]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]);
|
|
nextP[1][3] = P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17] + SPP[1]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[15]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) - SPP[21]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]);
|
|
nextP[2][3] = P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16] + SPP[1]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[15]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) - SPP[21]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + (SF[16]*SF[23] - SF[17]*SPP[21])*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]);
|
|
nextP[3][3] = P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21] + dvyNoise*sq(SQ[6] - 2*q0*q3) + dvzNoise*sq(SQ[5] + 2*q0*q2) + SPP[1]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[19]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[15]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) - SPP[21]*(P[3][15] + P[0][15]*SPP[1] + P[2][15]*SPP[15] - P[15][15]*SPP[21] + P[1][15]*(SF[16]*SF[23] - SF[17]*SPP[21])) + dvxNoise*sq(SG[1] + SG[2] - SG[3] - SQ[7]);
|
|
nextP[0][4] = P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18] + SF[22]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) + SPP[12]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]) + SPP[20]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[11]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]);
|
|
nextP[1][4] = P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17] + SF[22]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) + SPP[12]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]) + SPP[20]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[11]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]);
|
|
nextP[2][4] = P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16] + SF[22]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) + SPP[12]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]) + SPP[20]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[11]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]);
|
|
nextP[3][4] = P[3][4] + SQ[2] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21] + SF[22]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) + SPP[12]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]) + SPP[20]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[11]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]);
|
|
nextP[4][4] = P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11] + dvxNoise*sq(SQ[6] + 2*q0*q3) + dvzNoise*sq(SQ[4] - 2*q0*q1) + SF[22]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) + SPP[12]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]) + SPP[20]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[11]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + dvyNoise*sq(SG[1] - SG[2] + SG[3] - SQ[7]);
|
|
nextP[0][5] = P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18] + SF[20]*(P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18]) - SPP[7]*(P[0][0]*SPP[5] - P[1][0]*SPP[4] + P[2][0]*SPP[8] + P[9][0]*SPP[22] + P[12][0]*SPP[18]) + SPP[0]*(P[0][2]*SPP[5] - P[1][2]*SPP[4] + P[2][2]*SPP[8] + P[9][2]*SPP[22] + P[12][2]*SPP[18]) + SPP[10]*(P[0][1]*SPP[5] - P[1][1]*SPP[4] + P[2][1]*SPP[8] + P[9][1]*SPP[22] + P[12][1]*SPP[18]);
|
|
nextP[1][5] = P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17] + SF[20]*(P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17]) - SPP[7]*(P[1][0]*SPP[6] - P[0][0]*SPP[2] - P[2][0]*SPP[9] + P[10][0]*SPP[22] + P[13][0]*SPP[17]) + SPP[0]*(P[1][2]*SPP[6] - P[0][2]*SPP[2] - P[2][2]*SPP[9] + P[10][2]*SPP[22] + P[13][2]*SPP[17]) + SPP[10]*(P[1][1]*SPP[6] - P[0][1]*SPP[2] - P[2][1]*SPP[9] + P[10][1]*SPP[22] + P[13][1]*SPP[17]);
|
|
nextP[2][5] = P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16] + SF[20]*(P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16]) - SPP[7]*(P[0][0]*SPP[14] - P[1][0]*SPP[3] + P[2][0]*SPP[13] + P[11][0]*SPP[22] + P[14][0]*SPP[16]) + SPP[0]*(P[0][2]*SPP[14] - P[1][2]*SPP[3] + P[2][2]*SPP[13] + P[11][2]*SPP[22] + P[14][2]*SPP[16]) + SPP[10]*(P[0][1]*SPP[14] - P[1][1]*SPP[3] + P[2][1]*SPP[13] + P[11][1]*SPP[22] + P[14][1]*SPP[16]);
|
|
nextP[3][5] = P[3][5] + SQ[1] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21] + SF[20]*(P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21]) - SPP[7]*(P[3][0] + P[0][0]*SPP[1] + P[1][0]*SPP[19] + P[2][0]*SPP[15] - P[15][0]*SPP[21]) + SPP[0]*(P[3][2] + P[0][2]*SPP[1] + P[1][2]*SPP[19] + P[2][2]*SPP[15] - P[15][2]*SPP[21]) + SPP[10]*(P[3][1] + P[0][1]*SPP[1] + P[1][1]*SPP[19] + P[2][1]*SPP[15] - P[15][1]*SPP[21]);
|
|
nextP[4][5] = P[4][5] + SQ[0] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11] + SF[20]*(P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11]) - SPP[7]*(P[4][0] + P[15][0]*SF[22] + P[0][0]*SPP[20] + P[1][0]*SPP[12] + P[2][0]*SPP[11]) + SPP[0]*(P[4][2] + P[15][2]*SF[22] + P[0][2]*SPP[20] + P[1][2]*SPP[12] + P[2][2]*SPP[11]) + SPP[10]*(P[4][1] + P[15][1]*SF[22] + P[0][1]*SPP[20] + P[1][1]*SPP[12] + P[2][1]*SPP[11]);
|
|
nextP[5][5] = P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0] + dvxNoise*sq(SQ[5] - 2*q0*q2) + dvyNoise*sq(SQ[4] + 2*q0*q1) + SF[20]*(P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0]) - SPP[7]*(P[5][0] + P[15][0]*SF[20] - P[0][0]*SPP[7] + P[1][0]*SPP[10] + P[2][0]*SPP[0]) + SPP[0]*(P[5][2] + P[15][2]*SF[20] - P[0][2]*SPP[7] + P[1][2]*SPP[10] + P[2][2]*SPP[0]) + SPP[10]*(P[5][1] + P[15][1]*SF[20] - P[0][1]*SPP[7] + P[1][1]*SPP[10] + P[2][1]*SPP[0]) + dvzNoise*sq(SG[1] - SG[2] - SG[3] + SQ[7]);
|
|
nextP[0][6] = P[0][6]*SPP[5] - P[1][6]*SPP[4] + P[2][6]*SPP[8] + P[9][6]*SPP[22] + P[12][6]*SPP[18] + dt*(P[0][3]*SPP[5] - P[1][3]*SPP[4] + P[2][3]*SPP[8] + P[9][3]*SPP[22] + P[12][3]*SPP[18]);
|
|
nextP[1][6] = P[1][6]*SPP[6] - P[0][6]*SPP[2] - P[2][6]*SPP[9] + P[10][6]*SPP[22] + P[13][6]*SPP[17] + dt*(P[1][3]*SPP[6] - P[0][3]*SPP[2] - P[2][3]*SPP[9] + P[10][3]*SPP[22] + P[13][3]*SPP[17]);
|
|
nextP[2][6] = P[0][6]*SPP[14] - P[1][6]*SPP[3] + P[2][6]*SPP[13] + P[11][6]*SPP[22] + P[14][6]*SPP[16] + dt*(P[0][3]*SPP[14] - P[1][3]*SPP[3] + P[2][3]*SPP[13] + P[11][3]*SPP[22] + P[14][3]*SPP[16]);
|
|
nextP[3][6] = P[3][6] + P[0][6]*SPP[1] + P[1][6]*SPP[19] + P[2][6]*SPP[15] - P[15][6]*SPP[21] + dt*(P[3][3] + P[0][3]*SPP[1] + P[1][3]*SPP[19] + P[2][3]*SPP[15] - P[15][3]*SPP[21]);
|
|
nextP[4][6] = P[4][6] + P[15][6]*SF[22] + P[0][6]*SPP[20] + P[1][6]*SPP[12] + P[2][6]*SPP[11] + dt*(P[4][3] + P[15][3]*SF[22] + P[0][3]*SPP[20] + P[1][3]*SPP[12] + P[2][3]*SPP[11]);
|
|
nextP[5][6] = P[5][6] + P[15][6]*SF[20] - P[0][6]*SPP[7] + P[1][6]*SPP[10] + P[2][6]*SPP[0] + dt*(P[5][3] + P[15][3]*SF[20] - P[0][3]*SPP[7] + P[1][3]*SPP[10] + P[2][3]*SPP[0]);
|
|
nextP[6][6] = P[6][6] + P[3][6]*dt + dt*(P[6][3] + P[3][3]*dt);
|
|
nextP[0][7] = P[0][7]*SPP[5] - P[1][7]*SPP[4] + P[2][7]*SPP[8] + P[9][7]*SPP[22] + P[12][7]*SPP[18] + dt*(P[0][4]*SPP[5] - P[1][4]*SPP[4] + P[2][4]*SPP[8] + P[9][4]*SPP[22] + P[12][4]*SPP[18]);
|
|
nextP[1][7] = P[1][7]*SPP[6] - P[0][7]*SPP[2] - P[2][7]*SPP[9] + P[10][7]*SPP[22] + P[13][7]*SPP[17] + dt*(P[1][4]*SPP[6] - P[0][4]*SPP[2] - P[2][4]*SPP[9] + P[10][4]*SPP[22] + P[13][4]*SPP[17]);
|
|
nextP[2][7] = P[0][7]*SPP[14] - P[1][7]*SPP[3] + P[2][7]*SPP[13] + P[11][7]*SPP[22] + P[14][7]*SPP[16] + dt*(P[0][4]*SPP[14] - P[1][4]*SPP[3] + P[2][4]*SPP[13] + P[11][4]*SPP[22] + P[14][4]*SPP[16]);
|
|
nextP[3][7] = P[3][7] + P[0][7]*SPP[1] + P[1][7]*SPP[19] + P[2][7]*SPP[15] - P[15][7]*SPP[21] + dt*(P[3][4] + P[0][4]*SPP[1] + P[1][4]*SPP[19] + P[2][4]*SPP[15] - P[15][4]*SPP[21]);
|
|
nextP[4][7] = P[4][7] + P[15][7]*SF[22] + P[0][7]*SPP[20] + P[1][7]*SPP[12] + P[2][7]*SPP[11] + dt*(P[4][4] + P[15][4]*SF[22] + P[0][4]*SPP[20] + P[1][4]*SPP[12] + P[2][4]*SPP[11]);
|
|
nextP[5][7] = P[5][7] + P[15][7]*SF[20] - P[0][7]*SPP[7] + P[1][7]*SPP[10] + P[2][7]*SPP[0] + dt*(P[5][4] + P[15][4]*SF[20] - P[0][4]*SPP[7] + P[1][4]*SPP[10] + P[2][4]*SPP[0]);
|
|
nextP[6][7] = P[6][7] + P[3][7]*dt + dt*(P[6][4] + P[3][4]*dt);
|
|
nextP[7][7] = P[7][7] + P[4][7]*dt + dt*(P[7][4] + P[4][4]*dt);
|
|
nextP[0][8] = P[0][8]*SPP[5] - P[1][8]*SPP[4] + P[2][8]*SPP[8] + P[9][8]*SPP[22] + P[12][8]*SPP[18] + dt*(P[0][5]*SPP[5] - P[1][5]*SPP[4] + P[2][5]*SPP[8] + P[9][5]*SPP[22] + P[12][5]*SPP[18]);
|
|
nextP[1][8] = P[1][8]*SPP[6] - P[0][8]*SPP[2] - P[2][8]*SPP[9] + P[10][8]*SPP[22] + P[13][8]*SPP[17] + dt*(P[1][5]*SPP[6] - P[0][5]*SPP[2] - P[2][5]*SPP[9] + P[10][5]*SPP[22] + P[13][5]*SPP[17]);
|
|
nextP[2][8] = P[0][8]*SPP[14] - P[1][8]*SPP[3] + P[2][8]*SPP[13] + P[11][8]*SPP[22] + P[14][8]*SPP[16] + dt*(P[0][5]*SPP[14] - P[1][5]*SPP[3] + P[2][5]*SPP[13] + P[11][5]*SPP[22] + P[14][5]*SPP[16]);
|
|
nextP[3][8] = P[3][8] + P[0][8]*SPP[1] + P[1][8]*SPP[19] + P[2][8]*SPP[15] - P[15][8]*SPP[21] + dt*(P[3][5] + P[0][5]*SPP[1] + P[1][5]*SPP[19] + P[2][5]*SPP[15] - P[15][5]*SPP[21]);
|
|
nextP[4][8] = P[4][8] + P[15][8]*SF[22] + P[0][8]*SPP[20] + P[1][8]*SPP[12] + P[2][8]*SPP[11] + dt*(P[4][5] + P[15][5]*SF[22] + P[0][5]*SPP[20] + P[1][5]*SPP[12] + P[2][5]*SPP[11]);
|
|
nextP[5][8] = P[5][8] + P[15][8]*SF[20] - P[0][8]*SPP[7] + P[1][8]*SPP[10] + P[2][8]*SPP[0] + dt*(P[5][5] + P[15][5]*SF[20] - P[0][5]*SPP[7] + P[1][5]*SPP[10] + P[2][5]*SPP[0]);
|
|
nextP[6][8] = P[6][8] + P[3][8]*dt + dt*(P[6][5] + P[3][5]*dt);
|
|
nextP[7][8] = P[7][8] + P[4][8]*dt + dt*(P[7][5] + P[4][5]*dt);
|
|
nextP[8][8] = P[8][8] + P[5][8]*dt + dt*(P[8][5] + P[5][5]*dt);
|
|
nextP[0][9] = P[0][9]*SPP[5] - P[1][9]*SPP[4] + P[2][9]*SPP[8] + P[9][9]*SPP[22] + P[12][9]*SPP[18];
|
|
nextP[1][9] = P[1][9]*SPP[6] - P[0][9]*SPP[2] - P[2][9]*SPP[9] + P[10][9]*SPP[22] + P[13][9]*SPP[17];
|
|
nextP[2][9] = P[0][9]*SPP[14] - P[1][9]*SPP[3] + P[2][9]*SPP[13] + P[11][9]*SPP[22] + P[14][9]*SPP[16];
|
|
nextP[3][9] = P[3][9] + P[0][9]*SPP[1] + P[1][9]*SPP[19] + P[2][9]*SPP[15] - P[15][9]*SPP[21];
|
|
nextP[4][9] = P[4][9] + P[15][9]*SF[22] + P[0][9]*SPP[20] + P[1][9]*SPP[12] + P[2][9]*SPP[11];
|
|
nextP[5][9] = P[5][9] + P[15][9]*SF[20] - P[0][9]*SPP[7] + P[1][9]*SPP[10] + P[2][9]*SPP[0];
|
|
nextP[6][9] = P[6][9] + P[3][9]*dt;
|
|
nextP[7][9] = P[7][9] + P[4][9]*dt;
|
|
nextP[8][9] = P[8][9] + P[5][9]*dt;
|
|
nextP[9][9] = P[9][9];
|
|
nextP[0][10] = P[0][10]*SPP[5] - P[1][10]*SPP[4] + P[2][10]*SPP[8] + P[9][10]*SPP[22] + P[12][10]*SPP[18];
|
|
nextP[1][10] = P[1][10]*SPP[6] - P[0][10]*SPP[2] - P[2][10]*SPP[9] + P[10][10]*SPP[22] + P[13][10]*SPP[17];
|
|
nextP[2][10] = P[0][10]*SPP[14] - P[1][10]*SPP[3] + P[2][10]*SPP[13] + P[11][10]*SPP[22] + P[14][10]*SPP[16];
|
|
nextP[3][10] = P[3][10] + P[0][10]*SPP[1] + P[1][10]*SPP[19] + P[2][10]*SPP[15] - P[15][10]*SPP[21];
|
|
nextP[4][10] = P[4][10] + P[15][10]*SF[22] + P[0][10]*SPP[20] + P[1][10]*SPP[12] + P[2][10]*SPP[11];
|
|
nextP[5][10] = P[5][10] + P[15][10]*SF[20] - P[0][10]*SPP[7] + P[1][10]*SPP[10] + P[2][10]*SPP[0];
|
|
nextP[6][10] = P[6][10] + P[3][10]*dt;
|
|
nextP[7][10] = P[7][10] + P[4][10]*dt;
|
|
nextP[8][10] = P[8][10] + P[5][10]*dt;
|
|
nextP[9][10] = P[9][10];
|
|
nextP[10][10] = P[10][10];
|
|
nextP[0][11] = P[0][11]*SPP[5] - P[1][11]*SPP[4] + P[2][11]*SPP[8] + P[9][11]*SPP[22] + P[12][11]*SPP[18];
|
|
nextP[1][11] = P[1][11]*SPP[6] - P[0][11]*SPP[2] - P[2][11]*SPP[9] + P[10][11]*SPP[22] + P[13][11]*SPP[17];
|
|
nextP[2][11] = P[0][11]*SPP[14] - P[1][11]*SPP[3] + P[2][11]*SPP[13] + P[11][11]*SPP[22] + P[14][11]*SPP[16];
|
|
nextP[3][11] = P[3][11] + P[0][11]*SPP[1] + P[1][11]*SPP[19] + P[2][11]*SPP[15] - P[15][11]*SPP[21];
|
|
nextP[4][11] = P[4][11] + P[15][11]*SF[22] + P[0][11]*SPP[20] + P[1][11]*SPP[12] + P[2][11]*SPP[11];
|
|
nextP[5][11] = P[5][11] + P[15][11]*SF[20] - P[0][11]*SPP[7] + P[1][11]*SPP[10] + P[2][11]*SPP[0];
|
|
nextP[6][11] = P[6][11] + P[3][11]*dt;
|
|
nextP[7][11] = P[7][11] + P[4][11]*dt;
|
|
nextP[8][11] = P[8][11] + P[5][11]*dt;
|
|
nextP[9][11] = P[9][11];
|
|
nextP[10][11] = P[10][11];
|
|
nextP[11][11] = P[11][11];
|
|
nextP[0][12] = P[0][12]*SPP[5] - P[1][12]*SPP[4] + P[2][12]*SPP[8] + P[9][12]*SPP[22] + P[12][12]*SPP[18];
|
|
nextP[1][12] = P[1][12]*SPP[6] - P[0][12]*SPP[2] - P[2][12]*SPP[9] + P[10][12]*SPP[22] + P[13][12]*SPP[17];
|
|
nextP[2][12] = P[0][12]*SPP[14] - P[1][12]*SPP[3] + P[2][12]*SPP[13] + P[11][12]*SPP[22] + P[14][12]*SPP[16];
|
|
nextP[3][12] = P[3][12] + P[0][12]*SPP[1] + P[1][12]*SPP[19] + P[2][12]*SPP[15] - P[15][12]*SPP[21];
|
|
nextP[4][12] = P[4][12] + P[15][12]*SF[22] + P[0][12]*SPP[20] + P[1][12]*SPP[12] + P[2][12]*SPP[11];
|
|
nextP[5][12] = P[5][12] + P[15][12]*SF[20] - P[0][12]*SPP[7] + P[1][12]*SPP[10] + P[2][12]*SPP[0];
|
|
nextP[6][12] = P[6][12] + P[3][12]*dt;
|
|
nextP[7][12] = P[7][12] + P[4][12]*dt;
|
|
nextP[8][12] = P[8][12] + P[5][12]*dt;
|
|
nextP[9][12] = P[9][12];
|
|
nextP[10][12] = P[10][12];
|
|
nextP[11][12] = P[11][12];
|
|
nextP[12][12] = P[12][12];
|
|
nextP[0][13] = P[0][13]*SPP[5] - P[1][13]*SPP[4] + P[2][13]*SPP[8] + P[9][13]*SPP[22] + P[12][13]*SPP[18];
|
|
nextP[1][13] = P[1][13]*SPP[6] - P[0][13]*SPP[2] - P[2][13]*SPP[9] + P[10][13]*SPP[22] + P[13][13]*SPP[17];
|
|
nextP[2][13] = P[0][13]*SPP[14] - P[1][13]*SPP[3] + P[2][13]*SPP[13] + P[11][13]*SPP[22] + P[14][13]*SPP[16];
|
|
nextP[3][13] = P[3][13] + P[0][13]*SPP[1] + P[1][13]*SPP[19] + P[2][13]*SPP[15] - P[15][13]*SPP[21];
|
|
nextP[4][13] = P[4][13] + P[15][13]*SF[22] + P[0][13]*SPP[20] + P[1][13]*SPP[12] + P[2][13]*SPP[11];
|
|
nextP[5][13] = P[5][13] + P[15][13]*SF[20] - P[0][13]*SPP[7] + P[1][13]*SPP[10] + P[2][13]*SPP[0];
|
|
nextP[6][13] = P[6][13] + P[3][13]*dt;
|
|
nextP[7][13] = P[7][13] + P[4][13]*dt;
|
|
nextP[8][13] = P[8][13] + P[5][13]*dt;
|
|
nextP[9][13] = P[9][13];
|
|
nextP[10][13] = P[10][13];
|
|
nextP[11][13] = P[11][13];
|
|
nextP[12][13] = P[12][13];
|
|
nextP[13][13] = P[13][13];
|
|
nextP[0][14] = P[0][14]*SPP[5] - P[1][14]*SPP[4] + P[2][14]*SPP[8] + P[9][14]*SPP[22] + P[12][14]*SPP[18];
|
|
nextP[1][14] = P[1][14]*SPP[6] - P[0][14]*SPP[2] - P[2][14]*SPP[9] + P[10][14]*SPP[22] + P[13][14]*SPP[17];
|
|
nextP[2][14] = P[0][14]*SPP[14] - P[1][14]*SPP[3] + P[2][14]*SPP[13] + P[11][14]*SPP[22] + P[14][14]*SPP[16];
|
|
nextP[3][14] = P[3][14] + P[0][14]*SPP[1] + P[1][14]*SPP[19] + P[2][14]*SPP[15] - P[15][14]*SPP[21];
|
|
nextP[4][14] = P[4][14] + P[15][14]*SF[22] + P[0][14]*SPP[20] + P[1][14]*SPP[12] + P[2][14]*SPP[11];
|
|
nextP[5][14] = P[5][14] + P[15][14]*SF[20] - P[0][14]*SPP[7] + P[1][14]*SPP[10] + P[2][14]*SPP[0];
|
|
nextP[6][14] = P[6][14] + P[3][14]*dt;
|
|
nextP[7][14] = P[7][14] + P[4][14]*dt;
|
|
nextP[8][14] = P[8][14] + P[5][14]*dt;
|
|
nextP[9][14] = P[9][14];
|
|
nextP[10][14] = P[10][14];
|
|
nextP[11][14] = P[11][14];
|
|
nextP[12][14] = P[12][14];
|
|
nextP[13][14] = P[13][14];
|
|
nextP[14][14] = P[14][14];
|
|
nextP[0][15] = P[0][15]*SPP[5] - P[1][15]*SPP[4] + P[2][15]*SPP[8] + P[9][15]*SPP[22] + P[12][15]*SPP[18];
|
|
nextP[1][15] = P[1][15]*SPP[6] - P[0][15]*SPP[2] - P[2][15]*SPP[9] + P[10][15]*SPP[22] + P[13][15]*SPP[17];
|
|
nextP[2][15] = P[0][15]*SPP[14] - P[1][15]*SPP[3] + P[2][15]*SPP[13] + P[11][15]*SPP[22] + P[14][15]*SPP[16];
|
|
nextP[3][15] = P[3][15] + P[0][15]*SPP[1] + P[1][15]*SPP[19] + P[2][15]*SPP[15] - P[15][15]*SPP[21];
|
|
nextP[4][15] = P[4][15] + P[15][15]*SF[22] + P[0][15]*SPP[20] + P[1][15]*SPP[12] + P[2][15]*SPP[11];
|
|
nextP[5][15] = P[5][15] + P[15][15]*SF[20] - P[0][15]*SPP[7] + P[1][15]*SPP[10] + P[2][15]*SPP[0];
|
|
nextP[6][15] = P[6][15] + P[3][15]*dt;
|
|
nextP[7][15] = P[7][15] + P[4][15]*dt;
|
|
nextP[8][15] = P[8][15] + P[5][15]*dt;
|
|
nextP[9][15] = P[9][15];
|
|
nextP[10][15] = P[10][15];
|
|
nextP[11][15] = P[11][15];
|
|
nextP[12][15] = P[12][15];
|
|
nextP[13][15] = P[13][15];
|
|
nextP[14][15] = P[14][15];
|
|
nextP[15][15] = P[15][15];
|
|
|
|
if (stateIndexLim > 15) {
|
|
nextP[0][16] = P[0][16]*SPP[5] - P[1][16]*SPP[4] + P[2][16]*SPP[8] + P[9][16]*SPP[22] + P[12][16]*SPP[18];
|
|
nextP[1][16] = P[1][16]*SPP[6] - P[0][16]*SPP[2] - P[2][16]*SPP[9] + P[10][16]*SPP[22] + P[13][16]*SPP[17];
|
|
nextP[2][16] = P[0][16]*SPP[14] - P[1][16]*SPP[3] + P[2][16]*SPP[13] + P[11][16]*SPP[22] + P[14][16]*SPP[16];
|
|
nextP[3][16] = P[3][16] + P[0][16]*SPP[1] + P[1][16]*SPP[19] + P[2][16]*SPP[15] - P[15][16]*SPP[21];
|
|
nextP[4][16] = P[4][16] + P[15][16]*SF[22] + P[0][16]*SPP[20] + P[1][16]*SPP[12] + P[2][16]*SPP[11];
|
|
nextP[5][16] = P[5][16] + P[15][16]*SF[20] - P[0][16]*SPP[7] + P[1][16]*SPP[10] + P[2][16]*SPP[0];
|
|
nextP[6][16] = P[6][16] + P[3][16]*dt;
|
|
nextP[7][16] = P[7][16] + P[4][16]*dt;
|
|
nextP[8][16] = P[8][16] + P[5][16]*dt;
|
|
nextP[9][16] = P[9][16];
|
|
nextP[10][16] = P[10][16];
|
|
nextP[11][16] = P[11][16];
|
|
nextP[12][16] = P[12][16];
|
|
nextP[13][16] = P[13][16];
|
|
nextP[14][16] = P[14][16];
|
|
nextP[15][16] = P[15][16];
|
|
nextP[16][16] = P[16][16];
|
|
nextP[0][17] = P[0][17]*SPP[5] - P[1][17]*SPP[4] + P[2][17]*SPP[8] + P[9][17]*SPP[22] + P[12][17]*SPP[18];
|
|
nextP[1][17] = P[1][17]*SPP[6] - P[0][17]*SPP[2] - P[2][17]*SPP[9] + P[10][17]*SPP[22] + P[13][17]*SPP[17];
|
|
nextP[2][17] = P[0][17]*SPP[14] - P[1][17]*SPP[3] + P[2][17]*SPP[13] + P[11][17]*SPP[22] + P[14][17]*SPP[16];
|
|
nextP[3][17] = P[3][17] + P[0][17]*SPP[1] + P[1][17]*SPP[19] + P[2][17]*SPP[15] - P[15][17]*SPP[21];
|
|
nextP[4][17] = P[4][17] + P[15][17]*SF[22] + P[0][17]*SPP[20] + P[1][17]*SPP[12] + P[2][17]*SPP[11];
|
|
nextP[5][17] = P[5][17] + P[15][17]*SF[20] - P[0][17]*SPP[7] + P[1][17]*SPP[10] + P[2][17]*SPP[0];
|
|
nextP[6][17] = P[6][17] + P[3][17]*dt;
|
|
nextP[7][17] = P[7][17] + P[4][17]*dt;
|
|
nextP[8][17] = P[8][17] + P[5][17]*dt;
|
|
nextP[9][17] = P[9][17];
|
|
nextP[10][17] = P[10][17];
|
|
nextP[11][17] = P[11][17];
|
|
nextP[12][17] = P[12][17];
|
|
nextP[13][17] = P[13][17];
|
|
nextP[14][17] = P[14][17];
|
|
nextP[15][17] = P[15][17];
|
|
nextP[16][17] = P[16][17];
|
|
nextP[17][17] = P[17][17];
|
|
nextP[0][18] = P[0][18]*SPP[5] - P[1][18]*SPP[4] + P[2][18]*SPP[8] + P[9][18]*SPP[22] + P[12][18]*SPP[18];
|
|
nextP[1][18] = P[1][18]*SPP[6] - P[0][18]*SPP[2] - P[2][18]*SPP[9] + P[10][18]*SPP[22] + P[13][18]*SPP[17];
|
|
nextP[2][18] = P[0][18]*SPP[14] - P[1][18]*SPP[3] + P[2][18]*SPP[13] + P[11][18]*SPP[22] + P[14][18]*SPP[16];
|
|
nextP[3][18] = P[3][18] + P[0][18]*SPP[1] + P[1][18]*SPP[19] + P[2][18]*SPP[15] - P[15][18]*SPP[21];
|
|
nextP[4][18] = P[4][18] + P[15][18]*SF[22] + P[0][18]*SPP[20] + P[1][18]*SPP[12] + P[2][18]*SPP[11];
|
|
nextP[5][18] = P[5][18] + P[15][18]*SF[20] - P[0][18]*SPP[7] + P[1][18]*SPP[10] + P[2][18]*SPP[0];
|
|
nextP[6][18] = P[6][18] + P[3][18]*dt;
|
|
nextP[7][18] = P[7][18] + P[4][18]*dt;
|
|
nextP[8][18] = P[8][18] + P[5][18]*dt;
|
|
nextP[9][18] = P[9][18];
|
|
nextP[10][18] = P[10][18];
|
|
nextP[11][18] = P[11][18];
|
|
nextP[12][18] = P[12][18];
|
|
nextP[13][18] = P[13][18];
|
|
nextP[14][18] = P[14][18];
|
|
nextP[15][18] = P[15][18];
|
|
nextP[16][18] = P[16][18];
|
|
nextP[17][18] = P[17][18];
|
|
nextP[18][18] = P[18][18];
|
|
nextP[0][19] = P[0][19]*SPP[5] - P[1][19]*SPP[4] + P[2][19]*SPP[8] + P[9][19]*SPP[22] + P[12][19]*SPP[18];
|
|
nextP[1][19] = P[1][19]*SPP[6] - P[0][19]*SPP[2] - P[2][19]*SPP[9] + P[10][19]*SPP[22] + P[13][19]*SPP[17];
|
|
nextP[2][19] = P[0][19]*SPP[14] - P[1][19]*SPP[3] + P[2][19]*SPP[13] + P[11][19]*SPP[22] + P[14][19]*SPP[16];
|
|
nextP[3][19] = P[3][19] + P[0][19]*SPP[1] + P[1][19]*SPP[19] + P[2][19]*SPP[15] - P[15][19]*SPP[21];
|
|
nextP[4][19] = P[4][19] + P[15][19]*SF[22] + P[0][19]*SPP[20] + P[1][19]*SPP[12] + P[2][19]*SPP[11];
|
|
nextP[5][19] = P[5][19] + P[15][19]*SF[20] - P[0][19]*SPP[7] + P[1][19]*SPP[10] + P[2][19]*SPP[0];
|
|
nextP[6][19] = P[6][19] + P[3][19]*dt;
|
|
nextP[7][19] = P[7][19] + P[4][19]*dt;
|
|
nextP[8][19] = P[8][19] + P[5][19]*dt;
|
|
nextP[9][19] = P[9][19];
|
|
nextP[10][19] = P[10][19];
|
|
nextP[11][19] = P[11][19];
|
|
nextP[12][19] = P[12][19];
|
|
nextP[13][19] = P[13][19];
|
|
nextP[14][19] = P[14][19];
|
|
nextP[15][19] = P[15][19];
|
|
nextP[16][19] = P[16][19];
|
|
nextP[17][19] = P[17][19];
|
|
nextP[18][19] = P[18][19];
|
|
nextP[19][19] = P[19][19];
|
|
nextP[0][20] = P[0][20]*SPP[5] - P[1][20]*SPP[4] + P[2][20]*SPP[8] + P[9][20]*SPP[22] + P[12][20]*SPP[18];
|
|
nextP[1][20] = P[1][20]*SPP[6] - P[0][20]*SPP[2] - P[2][20]*SPP[9] + P[10][20]*SPP[22] + P[13][20]*SPP[17];
|
|
nextP[2][20] = P[0][20]*SPP[14] - P[1][20]*SPP[3] + P[2][20]*SPP[13] + P[11][20]*SPP[22] + P[14][20]*SPP[16];
|
|
nextP[3][20] = P[3][20] + P[0][20]*SPP[1] + P[1][20]*SPP[19] + P[2][20]*SPP[15] - P[15][20]*SPP[21];
|
|
nextP[4][20] = P[4][20] + P[15][20]*SF[22] + P[0][20]*SPP[20] + P[1][20]*SPP[12] + P[2][20]*SPP[11];
|
|
nextP[5][20] = P[5][20] + P[15][20]*SF[20] - P[0][20]*SPP[7] + P[1][20]*SPP[10] + P[2][20]*SPP[0];
|
|
nextP[6][20] = P[6][20] + P[3][20]*dt;
|
|
nextP[7][20] = P[7][20] + P[4][20]*dt;
|
|
nextP[8][20] = P[8][20] + P[5][20]*dt;
|
|
nextP[9][20] = P[9][20];
|
|
nextP[10][20] = P[10][20];
|
|
nextP[11][20] = P[11][20];
|
|
nextP[12][20] = P[12][20];
|
|
nextP[13][20] = P[13][20];
|
|
nextP[14][20] = P[14][20];
|
|
nextP[15][20] = P[15][20];
|
|
nextP[16][20] = P[16][20];
|
|
nextP[17][20] = P[17][20];
|
|
nextP[18][20] = P[18][20];
|
|
nextP[19][20] = P[19][20];
|
|
nextP[20][20] = P[20][20];
|
|
nextP[0][21] = P[0][21]*SPP[5] - P[1][21]*SPP[4] + P[2][21]*SPP[8] + P[9][21]*SPP[22] + P[12][21]*SPP[18];
|
|
nextP[1][21] = P[1][21]*SPP[6] - P[0][21]*SPP[2] - P[2][21]*SPP[9] + P[10][21]*SPP[22] + P[13][21]*SPP[17];
|
|
nextP[2][21] = P[0][21]*SPP[14] - P[1][21]*SPP[3] + P[2][21]*SPP[13] + P[11][21]*SPP[22] + P[14][21]*SPP[16];
|
|
nextP[3][21] = P[3][21] + P[0][21]*SPP[1] + P[1][21]*SPP[19] + P[2][21]*SPP[15] - P[15][21]*SPP[21];
|
|
nextP[4][21] = P[4][21] + P[15][21]*SF[22] + P[0][21]*SPP[20] + P[1][21]*SPP[12] + P[2][21]*SPP[11];
|
|
nextP[5][21] = P[5][21] + P[15][21]*SF[20] - P[0][21]*SPP[7] + P[1][21]*SPP[10] + P[2][21]*SPP[0];
|
|
nextP[6][21] = P[6][21] + P[3][21]*dt;
|
|
nextP[7][21] = P[7][21] + P[4][21]*dt;
|
|
nextP[8][21] = P[8][21] + P[5][21]*dt;
|
|
nextP[9][21] = P[9][21];
|
|
nextP[10][21] = P[10][21];
|
|
nextP[11][21] = P[11][21];
|
|
nextP[12][21] = P[12][21];
|
|
nextP[13][21] = P[13][21];
|
|
nextP[14][21] = P[14][21];
|
|
nextP[15][21] = P[15][21];
|
|
nextP[16][21] = P[16][21];
|
|
nextP[17][21] = P[17][21];
|
|
nextP[18][21] = P[18][21];
|
|
nextP[19][21] = P[19][21];
|
|
nextP[20][21] = P[20][21];
|
|
nextP[21][21] = P[21][21];
|
|
|
|
if (stateIndexLim > 21) {
|
|
nextP[0][22] = P[0][22]*SPP[5] - P[1][22]*SPP[4] + P[2][22]*SPP[8] + P[9][22]*SPP[22] + P[12][22]*SPP[18];
|
|
nextP[1][22] = P[1][22]*SPP[6] - P[0][22]*SPP[2] - P[2][22]*SPP[9] + P[10][22]*SPP[22] + P[13][22]*SPP[17];
|
|
nextP[2][22] = P[0][22]*SPP[14] - P[1][22]*SPP[3] + P[2][22]*SPP[13] + P[11][22]*SPP[22] + P[14][22]*SPP[16];
|
|
nextP[3][22] = P[3][22] + P[0][22]*SPP[1] + P[1][22]*SPP[19] + P[2][22]*SPP[15] - P[15][22]*SPP[21];
|
|
nextP[4][22] = P[4][22] + P[15][22]*SF[22] + P[0][22]*SPP[20] + P[1][22]*SPP[12] + P[2][22]*SPP[11];
|
|
nextP[5][22] = P[5][22] + P[15][22]*SF[20] - P[0][22]*SPP[7] + P[1][22]*SPP[10] + P[2][22]*SPP[0];
|
|
nextP[6][22] = P[6][22] + P[3][22]*dt;
|
|
nextP[7][22] = P[7][22] + P[4][22]*dt;
|
|
nextP[8][22] = P[8][22] + P[5][22]*dt;
|
|
nextP[9][22] = P[9][22];
|
|
nextP[10][22] = P[10][22];
|
|
nextP[11][22] = P[11][22];
|
|
nextP[12][22] = P[12][22];
|
|
nextP[13][22] = P[13][22];
|
|
nextP[14][22] = P[14][22];
|
|
nextP[15][22] = P[15][22];
|
|
nextP[16][22] = P[16][22];
|
|
nextP[17][22] = P[17][22];
|
|
nextP[18][22] = P[18][22];
|
|
nextP[19][22] = P[19][22];
|
|
nextP[20][22] = P[20][22];
|
|
nextP[21][22] = P[21][22];
|
|
nextP[22][22] = P[22][22];
|
|
nextP[0][23] = P[0][23]*SPP[5] - P[1][23]*SPP[4] + P[2][23]*SPP[8] + P[9][23]*SPP[22] + P[12][23]*SPP[18];
|
|
nextP[1][23] = P[1][23]*SPP[6] - P[0][23]*SPP[2] - P[2][23]*SPP[9] + P[10][23]*SPP[22] + P[13][23]*SPP[17];
|
|
nextP[2][23] = P[0][23]*SPP[14] - P[1][23]*SPP[3] + P[2][23]*SPP[13] + P[11][23]*SPP[22] + P[14][23]*SPP[16];
|
|
nextP[3][23] = P[3][23] + P[0][23]*SPP[1] + P[1][23]*SPP[19] + P[2][23]*SPP[15] - P[15][23]*SPP[21];
|
|
nextP[4][23] = P[4][23] + P[15][23]*SF[22] + P[0][23]*SPP[20] + P[1][23]*SPP[12] + P[2][23]*SPP[11];
|
|
nextP[5][23] = P[5][23] + P[15][23]*SF[20] - P[0][23]*SPP[7] + P[1][23]*SPP[10] + P[2][23]*SPP[0];
|
|
nextP[6][23] = P[6][23] + P[3][23]*dt;
|
|
nextP[7][23] = P[7][23] + P[4][23]*dt;
|
|
nextP[8][23] = P[8][23] + P[5][23]*dt;
|
|
nextP[9][23] = P[9][23];
|
|
nextP[10][23] = P[10][23];
|
|
nextP[11][23] = P[11][23];
|
|
nextP[12][23] = P[12][23];
|
|
nextP[13][23] = P[13][23];
|
|
nextP[14][23] = P[14][23];
|
|
nextP[15][23] = P[15][23];
|
|
nextP[16][23] = P[16][23];
|
|
nextP[17][23] = P[17][23];
|
|
nextP[18][23] = P[18][23];
|
|
nextP[19][23] = P[19][23];
|
|
nextP[20][23] = P[20][23];
|
|
nextP[21][23] = P[21][23];
|
|
nextP[22][23] = P[22][23];
|
|
nextP[23][23] = P[23][23];
|
|
}
|
|
}
|
|
|
|
// Copy upper diagonal to lower diagonal taking advantage of symmetry
|
|
for (uint8_t colIndex=0; colIndex<=stateIndexLim; colIndex++)
|
|
{
|
|
for (uint8_t rowIndex=0; rowIndex<colIndex; rowIndex++)
|
|
{
|
|
nextP[colIndex][rowIndex] = nextP[rowIndex][colIndex];
|
|
}
|
|
}
|
|
|
|
// add the general state process noise variances
|
|
for (uint8_t i=0; i<=stateIndexLim; i++)
|
|
{
|
|
nextP[i][i] = nextP[i][i] + processNoise[i];
|
|
}
|
|
|
|
// if the total position variance exceeds 1e4 (100m), then stop covariance
|
|
// growth by setting the predicted to the previous values
|
|
// This prevent an ill conditioned matrix from occurring for long periods
|
|
// without GPS
|
|
if ((P[6][6] + P[7][7]) > 1e4f)
|
|
{
|
|
for (uint8_t i=6; i<=7; i++)
|
|
{
|
|
for (uint8_t j=0; j<=stateIndexLim; j++)
|
|
{
|
|
nextP[i][j] = P[i][j];
|
|
nextP[j][i] = P[j][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy covariances to output
|
|
CopyCovariances();
|
|
|
|
// constrain diagonals to prevent ill-conditioning
|
|
ConstrainVariances();
|
|
}
|
|
|
|
// zero specified range of rows in the state covariance matrix
|
|
void NavEKF2_core::zeroRows(Matrix24 &covMat, uint8_t first, uint8_t last)
|
|
{
|
|
uint8_t row;
|
|
for (row=first; row<=last; row++)
|
|
{
|
|
memset(&covMat[row][0], 0, sizeof(covMat[0][0])*24);
|
|
}
|
|
}
|
|
|
|
// zero specified range of columns in the state covariance matrix
|
|
void NavEKF2_core::zeroCols(Matrix24 &covMat, uint8_t first, uint8_t last)
|
|
{
|
|
uint8_t row;
|
|
for (row=0; row<=23; row++)
|
|
{
|
|
memset(&covMat[row][first], 0, sizeof(covMat[0][0])*(1+last-first));
|
|
}
|
|
}
|
|
|
|
// reset the output data to the current EKF state
|
|
void NavEKF2_core::StoreOutputReset()
|
|
{
|
|
outputDataNew.quat = stateStruct.quat;
|
|
outputDataNew.velocity = stateStruct.velocity;
|
|
outputDataNew.position = stateStruct.position;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i] = outputDataNew;
|
|
}
|
|
outputDataDelayed = outputDataNew;
|
|
// reset the states for the complementary filter used to provide a vertical position dervative output
|
|
vertCompFiltState.pos = stateStruct.position.z;
|
|
vertCompFiltState.vel = stateStruct.velocity.z;
|
|
}
|
|
|
|
// Reset the stored output quaternion history to current EKF state
|
|
void NavEKF2_core::StoreQuatReset()
|
|
{
|
|
outputDataNew.quat = stateStruct.quat;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i].quat = outputDataNew.quat;
|
|
}
|
|
outputDataDelayed.quat = outputDataNew.quat;
|
|
}
|
|
|
|
// Rotate the stored output quaternion history through a quaternion rotation
|
|
void NavEKF2_core::StoreQuatRotate(const Quaternion &deltaQuat)
|
|
{
|
|
outputDataNew.quat = outputDataNew.quat*deltaQuat;
|
|
// write current measurement to entire table
|
|
for (uint8_t i=0; i<imu_buffer_length; i++) {
|
|
storedOutput[i].quat = storedOutput[i].quat*deltaQuat;
|
|
}
|
|
outputDataDelayed.quat = outputDataDelayed.quat*deltaQuat;
|
|
}
|
|
|
|
// force symmetry on the covariance matrix to prevent ill-conditioning
|
|
void NavEKF2_core::ForceSymmetry()
|
|
{
|
|
for (uint8_t i=1; i<=stateIndexLim; i++)
|
|
{
|
|
for (uint8_t j=0; j<=i-1; j++)
|
|
{
|
|
float temp = 0.5f*(P[i][j] + P[j][i]);
|
|
P[i][j] = temp;
|
|
P[j][i] = temp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy covariances across from covariance prediction calculation
|
|
void NavEKF2_core::CopyCovariances()
|
|
{
|
|
// copy predicted covariances
|
|
for (uint8_t i=0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j=0; j<=stateIndexLim; j++)
|
|
{
|
|
P[i][j] = nextP[i][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
// constrain variances (diagonal terms) in the state covariance matrix to prevent ill-conditioning
|
|
void NavEKF2_core::ConstrainVariances()
|
|
{
|
|
for (uint8_t i=0; i<=2; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0f); // attitude error
|
|
for (uint8_t i=3; i<=5; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // velocities
|
|
for (uint8_t i=6; i<=7; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e6f);
|
|
P[8][8] = constrain_float(P[8][8],0.0f,1.0e6f); // vertical position
|
|
for (uint8_t i=9; i<=11; i++) P[i][i] = constrain_float(P[i][i],0.0f,sq(0.175f * dtEkfAvg)); // delta angle biases
|
|
if (PV_AidingMode != AID_NONE) {
|
|
for (uint8_t i=12; i<=14; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // delta angle scale factors
|
|
} else {
|
|
// we can't reliably estimate scale factors when there is no aiding data due to transient manoeuvre induced innovations
|
|
// so inhibit estimation by keeping covariance elements at zero
|
|
zeroRows(P,12,14);
|
|
zeroCols(P,12,14);
|
|
}
|
|
P[15][15] = constrain_float(P[15][15],0.0f,sq(10.0f * dtEkfAvg)); // delta velocity bias
|
|
for (uint8_t i=16; i<=18; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // earth magnetic field
|
|
for (uint8_t i=19; i<=21; i++) P[i][i] = constrain_float(P[i][i],0.0f,0.01f); // body magnetic field
|
|
for (uint8_t i=22; i<=23; i++) P[i][i] = constrain_float(P[i][i],0.0f,1.0e3f); // wind velocity
|
|
}
|
|
|
|
// constrain states using WMM tables and specified limit
|
|
void NavEKF2_core::MagTableConstrain(void)
|
|
{
|
|
// constrain to error from table earth field
|
|
float limit_ga = frontend->_mag_ef_limit * 0.001f;
|
|
stateStruct.earth_magfield.x = constrain_float(stateStruct.earth_magfield.x,
|
|
table_earth_field_ga.x-limit_ga,
|
|
table_earth_field_ga.x+limit_ga);
|
|
stateStruct.earth_magfield.y = constrain_float(stateStruct.earth_magfield.y,
|
|
table_earth_field_ga.y-limit_ga,
|
|
table_earth_field_ga.y+limit_ga);
|
|
stateStruct.earth_magfield.z = constrain_float(stateStruct.earth_magfield.z,
|
|
table_earth_field_ga.z-limit_ga,
|
|
table_earth_field_ga.z+limit_ga);
|
|
}
|
|
|
|
// constrain states to prevent ill-conditioning
|
|
void NavEKF2_core::ConstrainStates()
|
|
{
|
|
// attitude errors are limited between +-1
|
|
for (uint8_t i=0; i<=2; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
|
|
// velocity limit 500 m/sec (could set this based on some multiple of max airspeed * EAS2TAS)
|
|
for (uint8_t i=3; i<=5; i++) statesArray[i] = constrain_float(statesArray[i],-5.0e2f,5.0e2f);
|
|
// position limit 1000 km - TODO apply circular limit
|
|
for (uint8_t i=6; i<=7; i++) statesArray[i] = constrain_float(statesArray[i],-1.0e6f,1.0e6f);
|
|
// height limit covers home alt on everest through to home alt at SL and ballon drop
|
|
stateStruct.position.z = constrain_float(stateStruct.position.z,-4.0e4f,1.0e4f);
|
|
// gyro bias limit (this needs to be set based on manufacturers specs)
|
|
for (uint8_t i=9; i<=11; i++) statesArray[i] = constrain_float(statesArray[i],-GYRO_BIAS_LIMIT*dtEkfAvg,GYRO_BIAS_LIMIT*dtEkfAvg);
|
|
// gyro scale factor limit of +-5% (this needs to be set based on manufacturers specs)
|
|
for (uint8_t i=12; i<=14; i++) statesArray[i] = constrain_float(statesArray[i],0.95f,1.05f);
|
|
// Z accel bias limit 1.0 m/s^2 (this needs to be finalised from test data)
|
|
stateStruct.accel_zbias = constrain_float(stateStruct.accel_zbias,-1.0f*dtEkfAvg,1.0f*dtEkfAvg);
|
|
|
|
// earth magnetic field limit
|
|
if (frontend->_mag_ef_limit <= 0 || !have_table_earth_field) {
|
|
// constrain to +/-1Ga
|
|
for (uint8_t i=16; i<=18; i++) statesArray[i] = constrain_float(statesArray[i],-1.0f,1.0f);
|
|
} else {
|
|
// use table constrain
|
|
MagTableConstrain();
|
|
}
|
|
|
|
// body magnetic field limit
|
|
for (uint8_t i=19; i<=21; i++) statesArray[i] = constrain_float(statesArray[i],-0.5f,0.5f);
|
|
// wind velocity limit 100 m/s (could be based on some multiple of max airspeed * EAS2TAS) - TODO apply circular limit
|
|
for (uint8_t i=22; i<=23; i++) statesArray[i] = constrain_float(statesArray[i],-100.0f,100.0f);
|
|
// constrain the terrain state to be below the vehicle height unless we are using terrain as the height datum
|
|
if (!inhibitGndState) {
|
|
terrainState = MAX(terrainState, stateStruct.position.z + rngOnGnd);
|
|
}
|
|
}
|
|
|
|
// calculate the NED earth spin vector in rad/sec
|
|
void NavEKF2_core::calcEarthRateNED(Vector3f &omega, int32_t latitude) const
|
|
{
|
|
float lat_rad = radians(latitude*1.0e-7f);
|
|
omega.x = earthRate*cosf(lat_rad);
|
|
omega.y = 0;
|
|
omega.z = -earthRate*sinf(lat_rad);
|
|
}
|
|
|
|
// initialise the earth magnetic field states using declination, suppled roll/pitch
|
|
// and magnetometer measurements and return initial attitude quaternion
|
|
Quaternion NavEKF2_core::calcQuatAndFieldStates(float roll, float pitch)
|
|
{
|
|
// declare local variables required to calculate initial orientation and magnetic field
|
|
float yaw;
|
|
Matrix3f Tbn;
|
|
Vector3f initMagNED;
|
|
Quaternion initQuat;
|
|
|
|
if (use_compass()) {
|
|
// calculate rotation matrix from body to NED frame
|
|
Tbn.from_euler(roll, pitch, 0.0f);
|
|
|
|
// read the magnetometer data
|
|
readMagData();
|
|
|
|
// rotate the magnetic field into NED axes
|
|
initMagNED = Tbn * magDataDelayed.mag;
|
|
|
|
// calculate heading of mag field rel to body heading
|
|
float magHeading = atan2f(initMagNED.y, initMagNED.x);
|
|
|
|
// get the magnetic declination
|
|
float magDecAng = MagDeclination();
|
|
|
|
// calculate yaw angle rel to true north
|
|
yaw = magDecAng - magHeading;
|
|
|
|
// calculate initial filter quaternion states using yaw from magnetometer
|
|
// store the yaw change so that it can be retrieved externally for use by the control loops to prevent yaw disturbances following a reset
|
|
Vector3f tempEuler;
|
|
stateStruct.quat.to_euler(tempEuler.x, tempEuler.y, tempEuler.z);
|
|
// this check ensures we accumulate the resets that occur within a single iteration of the EKF
|
|
if (imuSampleTime_ms != lastYawReset_ms) {
|
|
yawResetAngle = 0.0f;
|
|
}
|
|
yawResetAngle += wrap_PI(yaw - tempEuler.z);
|
|
lastYawReset_ms = imuSampleTime_ms;
|
|
// calculate an initial quaternion using the new yaw value
|
|
initQuat.from_euler(roll, pitch, yaw);
|
|
// zero the attitude covariances because the corelations will now be invalid
|
|
zeroAttCovOnly();
|
|
|
|
// calculate initial Tbn matrix and rotate Mag measurements into NED
|
|
// to set initial NED magnetic field states
|
|
// don't do this if the earth field has already been learned
|
|
if (!magFieldLearned) {
|
|
initQuat.rotation_matrix(Tbn);
|
|
if (have_table_earth_field && frontend->_mag_ef_limit > 0) {
|
|
stateStruct.earth_magfield = table_earth_field_ga;
|
|
} else {
|
|
stateStruct.earth_magfield = Tbn * magDataDelayed.mag;
|
|
}
|
|
|
|
// set the NE earth magnetic field states using the published declination
|
|
// and set the corresponding variances and covariances
|
|
alignMagStateDeclination();
|
|
|
|
// set the remaining variances and covariances
|
|
zeroRows(P,18,21);
|
|
zeroCols(P,18,21);
|
|
P[18][18] = sq(frontend->_magNoise);
|
|
P[19][19] = P[18][18];
|
|
P[20][20] = P[18][18];
|
|
P[21][21] = P[18][18];
|
|
|
|
}
|
|
|
|
// record the fact we have initialised the magnetic field states
|
|
recordMagReset();
|
|
|
|
// clear mag state reset request
|
|
magStateResetRequest = false;
|
|
|
|
} else {
|
|
// this function should not be called if there is no compass data but if is is, return the
|
|
// current attitude
|
|
initQuat = stateStruct.quat;
|
|
}
|
|
|
|
// return attitude quaternion
|
|
return initQuat;
|
|
}
|
|
|
|
// zero the attitude covariances, but preserve the variances
|
|
void NavEKF2_core::zeroAttCovOnly()
|
|
{
|
|
float varTemp[3];
|
|
for (uint8_t index=0; index<=2; index++) {
|
|
varTemp[index] = P[index][index];
|
|
}
|
|
zeroCols(P,0,2);
|
|
zeroRows(P,0,2);
|
|
for (uint8_t index=0; index<=2; index++) {
|
|
P[index][index] = varTemp[index];
|
|
}
|
|
}
|
|
|