Ardupilot2/libraries/AP_Compass/AP_Compass_BMM350.cpp
2024-09-21 10:08:36 +10:00

493 lines
18 KiB
C++

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Compass_BMM350.h"
#if AP_COMPASS_BMM350_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <utility>
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_Math/AP_Math.h>
#define BMM350_REG_CHIP_ID 0x00
#define BMM350_REG_PMU_CMD_AGGR_SET 0x04
#define BMM350_REG_PMU_CMD_AXIS_EN 0x05
#define BMM350_REG_PMU_CMD 0x06
#define BMM350_REG_PMU_CMD_STATUS_0 0x07
#define BMM350_REG_INT_CTRL 0x2E
#define BMM350_REG_MAG_X_XLSB 0x31
#define BMM350_REG_OTP_CMD 0x50
#define BMM350_REG_OTP_DATA_MSB 0x52
#define BMM350_REG_OTP_DATA_LSB 0x53
#define BMM350_REG_OTP_STATUS 0x55
#define BMM350_REG_CMD 0x7E
// OTP(one-time programmable memory)
#define BMM350_OTP_CMD_DIR_READ (0x01<<5U)
#define BMM350_OTP_CMD_PWR_OFF_OTP (0x04<<5U)
#define BMM350_OTP_STATUS_ERROR_MASK 0xE0
#define BMM350_OTP_STATUS_CMD_DONE 0x01
#define BMM350_TEMP_OFF_SENS 0x0D
#define BMM350_MAG_OFFSET_X 0x0E
#define BMM350_MAG_OFFSET_Y 0x0F
#define BMM350_MAG_OFFSET_Z 0x10
#define BMM350_MAG_SENS_X 0x10
#define BMM350_MAG_SENS_Y 0x11
#define BMM350_MAG_SENS_Z 0x11
#define BMM350_MAG_TCO_X 0x12
#define BMM350_MAG_TCO_Y 0x13
#define BMM350_MAG_TCO_Z 0x14
#define BMM350_MAG_TCS_X 0x12
#define BMM350_MAG_TCS_Y 0x13
#define BMM350_MAG_TCS_Z 0x14
#define BMM350_MAG_DUT_T_0 0x18
#define BMM350_CROSS_X_Y 0x15
#define BMM350_CROSS_Y_X 0x15
#define BMM350_CROSS_Z_X 0x16
#define BMM350_CROSS_Z_Y 0x16
#define BMM350_SENS_CORR_Y 0.01f
#define BMM350_TCS_CORR_Z 0.0001f
#define BMM350_CMD_SOFTRESET 0xB6
#define BMM350_INT_MODE_PULSED (0<<0U)
#define BMM350_INT_POL_ACTIVE_HIGH (1<<1U)
#define BMM350_INT_OD_PUSHPULL (1<<2U)
#define BMM350_INT_OUTPUT_DISABLE (0<<3U)
#define BMM350_INT_DRDY_EN (1<<7U)
// Averaging performance
#define BMM350_AVERAGING_4 (0x02 << 4U)
#define BMM350_AVERAGING_8 (0x03 << 4U)
// Output data rate
#define BMM350_ODR_100HZ 0x04
#define BMM350_ODR_50HZ 0x05
// Power modes
#define BMM350_PMU_CMD_SUSPEND_MODE 0x00
#define BMM350_PMU_CMD_NORMAL_MODE 0x01
#define BMM350_PMU_CMD_UPD_OAE 0x02
#define BMM350_PMU_CMD_FGR 0x05
#define BMM350_PMU_CMD_BR 0x07
// OTP data length
#define BMM350_OTP_DATA_LENGTH 32U
// Chip ID of BMM350
#define BMM350_CHIP_ID 0x33
#define BMM350_XY_SENSITIVE 14.55f
#define BMM350_Z_SENSITIVE 9.0f
#define BMM350_TEMP_SENSITIVE 0.00204f
#define BMM350_XY_INA_GAIN 19.46f
#define BMM350_Z_INA_GAIN 31.0f
#define BMM350_ADC_GAIN (1.0f / 1.5f)
#define BMM350_LUT_GAIN 0.714607238769531f
#define BMM350_POWER ((float)(1000000.0 / 1048576.0))
#define BMM350_XY_SCALE (BMM350_POWER / (BMM350_XY_SENSITIVE * BMM350_XY_INA_GAIN * BMM350_ADC_GAIN * BMM350_LUT_GAIN))
#define BMM350_Z_SCALE (BMM350_POWER / (BMM350_Z_SENSITIVE * BMM350_Z_INA_GAIN * BMM350_ADC_GAIN * BMM350_LUT_GAIN))
#define BMM350_TEMP_SCALE (1.0f / (BMM350_TEMP_SENSITIVE * BMM350_ADC_GAIN * BMM350_LUT_GAIN * 1048576))
extern const AP_HAL::HAL &hal;
AP_Compass_Backend *AP_Compass_BMM350::probe(AP_HAL::OwnPtr<AP_HAL::Device> dev,
bool force_external,
enum Rotation rotation)
{
if (!dev) {
return nullptr;
}
AP_Compass_BMM350 *sensor = NEW_NOTHROW AP_Compass_BMM350(std::move(dev), force_external, rotation);
if (!sensor || !sensor->init()) {
delete sensor;
return nullptr;
}
return sensor;
}
AP_Compass_BMM350::AP_Compass_BMM350(AP_HAL::OwnPtr<AP_HAL::Device> dev,
bool force_external,
enum Rotation rotation)
: _dev(std::move(dev))
, _force_external(force_external)
, _rotation(rotation)
{
}
/**
* @brief Read out OTP(one-time programmable memory) data of sensor which is the compensation coefficients
* @see https://github.com/boschsensortec/BMM350-SensorAPI
*/
bool AP_Compass_BMM350::read_otp_data()
{
uint16_t otp_data[BMM350_OTP_DATA_LENGTH];
for (uint8_t index = 0; index < BMM350_OTP_DATA_LENGTH; index++) {
// Set OTP address
if (!_dev->write_register(BMM350_REG_OTP_CMD, (BMM350_OTP_CMD_DIR_READ | index))) {
return false;
}
// Wait for OTP status be ready
int8_t tries = 3; // Try polling 3 times
while (tries--)
{
uint8_t status;
hal.scheduler->delay_microseconds(300);
// Read OTP status
if (!read_bytes(BMM350_REG_OTP_STATUS, &status, 1) || ((status & BMM350_OTP_STATUS_ERROR_MASK) != 0)) {
return false;
}
if (status & BMM350_OTP_STATUS_CMD_DONE) {
break;
}
}
if (tries == -1) {
return false;
}
// Read OTP data
be16_t reg_data;
if (!read_bytes(BMM350_REG_OTP_DATA_MSB, (uint8_t *)&reg_data, 2)) {
return false;
}
otp_data[index] = be16toh(reg_data);
}
// Update magnetometer offset and sensitivity data.
// 12-bit unsigned integer to be left-aligned in a 16-bit integer
_mag_comp.offset_coef.x = float(int16_t((otp_data[BMM350_MAG_OFFSET_X] & 0x0FFF) << 4) >> 4);
_mag_comp.offset_coef.y = float(int16_t((((otp_data[BMM350_MAG_OFFSET_X] & 0xF000) >> 4) +
(otp_data[BMM350_MAG_OFFSET_Y] & 0x00FF)) << 4) >> 4);
_mag_comp.offset_coef.z = float(int16_t(((otp_data[BMM350_MAG_OFFSET_Y] & 0x0F00) +
(otp_data[BMM350_MAG_OFFSET_Z] & 0x00FF)) << 4) >> 4);
_mag_comp.offset_coef.temp = float(int8_t(otp_data[BMM350_TEMP_OFF_SENS])) * (1.0f / 5.0f);
_mag_comp.sensit_coef.x = float(int8_t((otp_data[BMM350_MAG_SENS_X] & 0xFF00) >> 8)) * (1.0f / 256.0f);
_mag_comp.sensit_coef.y = float(int8_t(otp_data[BMM350_MAG_SENS_Y])) * (1.0f / 256.0f) + BMM350_SENS_CORR_Y;
_mag_comp.sensit_coef.z = float(int8_t((otp_data[BMM350_MAG_SENS_Z] & 0xFF00) >> 8)) * (1.0f / 256.0f);
_mag_comp.sensit_coef.temp = float(int8_t((otp_data[BMM350_TEMP_OFF_SENS] & 0xFF00) >> 8)) * (1.0f / 512.0f);
_mag_comp.tco.x = float(int8_t(otp_data[BMM350_MAG_TCO_X])) * (1.0f / 32.0f);
_mag_comp.tco.y = float(int8_t(otp_data[BMM350_MAG_TCO_Y])) * (1.0f / 32.0f);
_mag_comp.tco.z = float(int8_t(otp_data[BMM350_MAG_TCO_Z])) * (1.0f / 32.0f);
_mag_comp.tcs.x = float(int8_t((otp_data[BMM350_MAG_TCS_X] & 0xFF00) >> 8)) * (1.0f / 16384.0f);
_mag_comp.tcs.y = float(int8_t((otp_data[BMM350_MAG_TCS_Y] & 0xFF00) >> 8)) * (1.0f / 16384.0f);
_mag_comp.tcs.z = float(int8_t((otp_data[BMM350_MAG_TCS_Z] & 0xFF00) >> 8)) * (1.0f / 16384.0f) - BMM350_TCS_CORR_Z;
_mag_comp.t0_reading = float(int16_t(otp_data[BMM350_MAG_DUT_T_0])) * (1.0f / 512.0f) + 23.0f;
_mag_comp.cross_axis.cross_x_y = float(int8_t(otp_data[BMM350_CROSS_X_Y])) * (1.0f / 800.0f);
_mag_comp.cross_axis.cross_y_x = float(int8_t((otp_data[BMM350_CROSS_Y_X] & 0xFF00) >> 8)) * (1.0f / 800.0f);
_mag_comp.cross_axis.cross_z_x = float(int8_t(otp_data[BMM350_CROSS_Z_X])) * (1.0f / 800.0f);
_mag_comp.cross_axis.cross_z_y = float(int8_t((otp_data[BMM350_CROSS_Z_Y] & 0xFF00) >> 8)) * (1.0f / 800.0f);
return true;
}
/**
* @brief Wait PMU_CMD register operation completed. Need to specify which command just sent
*/
bool AP_Compass_BMM350::wait_pmu_cmd_ready(const uint8_t cmd, const uint32_t timeout)
{
const uint32_t start_tick = AP_HAL::millis();
do {
hal.scheduler->delay(1);
uint8_t status;
if (!read_bytes(BMM350_REG_PMU_CMD_STATUS_0, &status, 1)) {
return false;
}
if (((status & 0x01) == 0x00) && (((status & 0xE0) >> 5) == cmd)) {
return true;
}
} while ((AP_HAL::millis() - start_tick) < timeout);
return false;
}
/**
* @brief Reset bit of magnetic register and wait for change to normal mode
*/
bool AP_Compass_BMM350::mag_reset_and_wait()
{
uint8_t data;
// Get PMU command status 0 data
if (!read_bytes(BMM350_REG_PMU_CMD_STATUS_0, &data, 1)) {
return false;
}
// Check whether the power mode is Normal
if (data & 0x08) {
// Set PMU command to suspend mode
if (!_dev->write_register(BMM350_REG_PMU_CMD, BMM350_PMU_CMD_SUSPEND_MODE)) {
return false;
}
wait_pmu_cmd_ready(BMM350_PMU_CMD_SUSPEND_MODE, 6);
}
// Set BR(bit reset) to PMU_CMD register
// In offical example, it wait for 14ms. But it may not be enough, so we wait an extra 5ms
if (!_dev->write_register(BMM350_REG_PMU_CMD, BMM350_PMU_CMD_BR) ||
!wait_pmu_cmd_ready(BMM350_PMU_CMD_BR, 19)) {
return false;
}
// Set FGR(flux-guide reset) to PMU_CMD register
// 18ms got from offical example, we wait an extra 5ms
if (!_dev->write_register(BMM350_REG_PMU_CMD, BMM350_PMU_CMD_FGR) ||
!wait_pmu_cmd_ready(BMM350_PMU_CMD_FGR, 23)) {
return false;
}
// Switch to normal mode
if (!set_power_mode(POWER_MODE_NORMAL)) {
return false;
}
return true;
}
/**
* @brief Switch sensor power mode
*/
bool AP_Compass_BMM350::set_power_mode(const enum power_mode mode)
{
uint8_t pmu_cmd;
// Get PMU register data as current mode
if (!read_bytes(BMM350_REG_PMU_CMD, &pmu_cmd, 1)) {
return false;
}
if (pmu_cmd == BMM350_PMU_CMD_NORMAL_MODE || pmu_cmd == BMM350_PMU_CMD_UPD_OAE) {
// Set PMU command to suspend mode
if (!_dev->write_register(BMM350_REG_PMU_CMD, POWER_MODE_SUSPEND)) {
return false;
}
// Wait for sensor switch to suspend mode
// Wait for maximum 6ms, it got from the official example, not explained in datasheet
wait_pmu_cmd_ready(POWER_MODE_SUSPEND, 6);
}
// Set PMU command to target mode
if (!_dev->write_register(BMM350_REG_PMU_CMD, mode)) {
return false;
}
// Wait for mode change. When switch from suspend mode to normal mode, we wait for at most 38ms.
// It got from official example too
wait_pmu_cmd_ready(mode, 38);
return true;
}
/**
* @brief Read bytes from sensor
*/
bool AP_Compass_BMM350::read_bytes(const uint8_t reg, uint8_t *out, const uint16_t read_len)
{
uint8_t data[read_len + 2];
if (!_dev->read_registers(reg, data, read_len + 2)) {
return false;
}
memcpy(out, &data[2], read_len);
return true;
}
bool AP_Compass_BMM350::init()
{
_dev->get_semaphore()->take_blocking();
// 10 retries for init
_dev->set_retries(10);
// Use checked registers to cope with bus errors
_dev->setup_checked_registers(4);
int8_t boot_retries = 5;
while (boot_retries--) {
// Soft reset
if (!_dev->write_register(BMM350_REG_CMD, BMM350_CMD_SOFTRESET)) {
continue;
}
hal.scheduler->delay(24); // Wait 24ms for soft reset complete, it got from offical example
// Read and verify chip ID
uint8_t chip_id;
if (!read_bytes(BMM350_REG_CHIP_ID, &chip_id, 1)) {
continue;
}
if (chip_id == BMM350_CHIP_ID) {
break;
}
}
if (boot_retries == -1) {
goto err;
}
// Read out OTP data
if (!read_otp_data()) {
goto err;
}
// Power off OTP
if (!_dev->write_register(BMM350_REG_OTP_CMD, BMM350_OTP_CMD_PWR_OFF_OTP)) {
goto err;
}
// Magnetic reset
if (!mag_reset_and_wait()) {
goto err;
}
// Configure interrupt settings and enable DRDY
// Set INT mode as PULSED | active_high polarity | PUSH_PULL | unmap | DRDY interrupt
if (!_dev->write_register(BMM350_REG_INT_CTRL, (BMM350_INT_MODE_PULSED |
BMM350_INT_POL_ACTIVE_HIGH |
BMM350_INT_OD_PUSHPULL |
BMM350_INT_OUTPUT_DISABLE |
BMM350_INT_DRDY_EN))) {
goto err;
}
// Setup ODR and performance. 100Hz ODR and 4 average for lownoise
if (!_dev->write_register(BMM350_REG_PMU_CMD_AGGR_SET, (BMM350_AVERAGING_4 | BMM350_ODR_100HZ))) {
goto err;
}
// Update ODR and avg parameter
if (!_dev->write_register(BMM350_REG_PMU_CMD, BMM350_PMU_CMD_UPD_OAE)) {
goto err;
}
// Wait at most 20ms for update ODR and avg paramter
wait_pmu_cmd_ready(BMM350_PMU_CMD_UPD_OAE, 20);
// Enable measurement of 3 axis
if (!_dev->write_register(BMM350_REG_PMU_CMD_AXIS_EN, 0x07)) {
goto err;
}
// Switch power mode to normal mode
if (!set_power_mode(POWER_MODE_NORMAL)) {
goto err;
}
// Lower retries for run
_dev->set_retries(3);
_dev->get_semaphore()->give();
/* Register the compass instance in the frontend */
_dev->set_device_type(DEVTYPE_BMM350);
if (!register_compass(_dev->get_bus_id(), _compass_instance)) {
return false;
}
set_dev_id(_compass_instance, _dev->get_bus_id());
// printf("BMM350: Found at address 0x%x as compass %u\n", _dev->get_bus_address(), _compass_instance);
set_rotation(_compass_instance, _rotation);
if (_force_external) {
set_external(_compass_instance, true);
}
// Call timer() at 100Hz
_dev->register_periodic_callback(1000000U/100U, FUNCTOR_BIND_MEMBER(&AP_Compass_BMM350::timer, void));
return true;
err:
_dev->get_semaphore()->give();
return false;
}
void AP_Compass_BMM350::timer()
{
struct PACKED {
uint8_t magx[3];
uint8_t magy[3];
uint8_t magz[3];
uint8_t temp[3];
} data;
// Read out measurement data
if (!read_bytes(BMM350_REG_MAG_X_XLSB, (uint8_t *)&data, sizeof(data))) {
return;
}
// Converts 24-bit raw data to signed integer value
const int32_t magx_raw = int32_t(((uint32_t)data.magx[0] << 8) + ((uint32_t)data.magx[1] << 16) + ((uint32_t)data.magx[2] << 24)) >> 8;
const int32_t magy_raw = int32_t(((uint32_t)data.magy[0] << 8) + ((uint32_t)data.magy[1] << 16) + ((uint32_t)data.magy[2] << 24)) >> 8;
const int32_t magz_raw = int32_t(((uint32_t)data.magz[0] << 8) + ((uint32_t)data.magz[1] << 16) + ((uint32_t)data.magz[2] << 24)) >> 8;
const int32_t temp_raw = int32_t(((uint32_t)data.temp[0] << 8) + ((uint32_t)data.temp[1] << 16) + ((uint32_t)data.temp[2] << 24)) >> 8;
// Convert mag lsb to uT and temp lsb to degC
float magx = (float)magx_raw * BMM350_XY_SCALE;
float magy = (float)magy_raw * BMM350_XY_SCALE;
float magz = (float)magz_raw * BMM350_Z_SCALE;
float temp = (float)temp_raw * BMM350_TEMP_SCALE;
if (temp > 0.0f) {
temp -= 25.49f;
} else if (temp < 0.0f) {
temp += 25.49f;
}
// Apply compensation
temp = ((1 + _mag_comp.sensit_coef.temp) * temp) + _mag_comp.offset_coef.temp;
// Compensate raw magnetic data
magx = ((1 + _mag_comp.sensit_coef.x) * magx) + _mag_comp.offset_coef.x + (_mag_comp.tco.x * (temp - _mag_comp.t0_reading));
magx /= 1 + _mag_comp.tcs.x * (temp - _mag_comp.t0_reading);
magy = ((1 + _mag_comp.sensit_coef.y) * magy) + _mag_comp.offset_coef.y + (_mag_comp.tco.y * (temp - _mag_comp.t0_reading));
magy /= 1 + _mag_comp.tcs.y * (temp - _mag_comp.t0_reading);
magz = ((1 + _mag_comp.sensit_coef.z) * magz) + _mag_comp.offset_coef.z + (_mag_comp.tco.z * (temp - _mag_comp.t0_reading));
magz /= 1 + _mag_comp.tcs.z * (temp - _mag_comp.t0_reading);
const float cr_ax_comp_x = (magx - _mag_comp.cross_axis.cross_x_y * magy) / (1 - _mag_comp.cross_axis.cross_y_x * _mag_comp.cross_axis.cross_x_y);
const float cr_ax_comp_y = (magy - _mag_comp.cross_axis.cross_y_x * magx) / (1 - _mag_comp.cross_axis.cross_y_x * _mag_comp.cross_axis.cross_x_y);
const float cr_ax_comp_z = (magz + (magx * (_mag_comp.cross_axis.cross_y_x * _mag_comp.cross_axis.cross_z_y - _mag_comp.cross_axis.cross_z_x) -
magy * (_mag_comp.cross_axis.cross_z_y - _mag_comp.cross_axis.cross_x_y * _mag_comp.cross_axis.cross_z_x)) /
(1 - _mag_comp.cross_axis.cross_y_x * _mag_comp.cross_axis.cross_x_y));
// Store in field vector and convert uT to milligauss
Vector3f field { cr_ax_comp_x * 10.0f, cr_ax_comp_y * 10.0f, cr_ax_comp_z * 10.0f };
accumulate_sample(field, _compass_instance);
}
void AP_Compass_BMM350::read()
{
drain_accumulated_samples(_compass_instance);
}
#endif // AP_COMPASS_BMM350_ENABLED