Ardupilot2/ArduPlane/mode_qrtl.cpp
Bob Long 5824a12b2e Plane: remove altitude_error_cm variable
This variable updated unpredictably, and it was easy to introduce bugs.
It was not used in many places and is clearer to calculate the error
directly when needed.
2024-05-07 10:52:43 +10:00

229 lines
9.4 KiB
C++

#include "mode.h"
#include "Plane.h"
#if HAL_QUADPLANE_ENABLED
bool ModeQRTL::_enter()
{
// treat QRTL as QLAND if we are in guided wait takeoff state, to cope
// with failsafes during GUIDED->AUTO takeoff sequence
if (plane.quadplane.guided_wait_takeoff_on_mode_enter) {
plane.set_mode(plane.mode_qland, ModeReason::QLAND_INSTEAD_OF_RTL);
return true;
}
submode = SubMode::RTL;
plane.prev_WP_loc = plane.current_loc;
int32_t RTL_alt_abs_cm = plane.home.alt + quadplane.qrtl_alt*100UL;
if (quadplane.motors->get_desired_spool_state() == AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED) {
// VTOL motors are active, either in VTOL flight or assisted flight
Location destination = plane.calc_best_rally_or_home_location(plane.current_loc, RTL_alt_abs_cm);
const float dist = plane.current_loc.get_distance(destination);
const float radius = get_VTOL_return_radius();
// Climb at least to a cone around home of hight of QRTL alt and radius of radius
// Always climb up to at least Q_RTL_ALT_MIN, constrain Q_RTL_ALT_MIN between Q_LAND_FINAL_ALT and Q_RTL_ALT
const float min_climb = constrain_float(quadplane.qrtl_alt_min, quadplane.land_final_alt, quadplane.qrtl_alt);
const float target_alt = MAX(quadplane.qrtl_alt * (dist / MAX(radius, dist)), min_climb);
#if AP_TERRAIN_AVAILABLE
const bool use_terrain = plane.terrain_enabled_in_mode(mode_number());
#else
const bool use_terrain = false;
#endif
const float dist_to_climb = target_alt - plane.relative_ground_altitude(plane.g.rangefinder_landing, use_terrain);
if (is_positive(dist_to_climb)) {
// climb before returning, only next waypoint altitude is used
submode = SubMode::climb;
plane.next_WP_loc = plane.current_loc;
#if AP_TERRAIN_AVAILABLE
int32_t curent_alt_terrain_cm;
if (use_terrain && plane.current_loc.get_alt_cm(Location::AltFrame::ABOVE_TERRAIN, curent_alt_terrain_cm)) {
plane.next_WP_loc.set_alt_cm(curent_alt_terrain_cm + dist_to_climb * 100UL, Location::AltFrame::ABOVE_TERRAIN);
return true;
}
#endif
plane.next_WP_loc.set_alt_cm(plane.current_loc.alt + dist_to_climb * 100UL, plane.current_loc.get_alt_frame());
return true;
} else if (dist < radius) {
// Above home "cone", return at curent altitude if lower than QRTL alt
int32_t current_alt_abs_cm;
if (plane.current_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, current_alt_abs_cm)) {
RTL_alt_abs_cm = MIN(RTL_alt_abs_cm, current_alt_abs_cm);
}
// we're close to destination and already running VTOL motors, don't transition and don't climb
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 d=%.1f r=%.1f", dist, radius);
poscontrol.set_state(QuadPlane::QPOS_POSITION1);
}
}
// use do_RTL() to setup next_WP_loc
plane.do_RTL(RTL_alt_abs_cm);
quadplane.poscontrol_init_approach();
int32_t from_alt;
int32_t to_alt;
if (plane.current_loc.get_alt_cm(Location::AltFrame::ABSOLUTE,from_alt) && plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE,to_alt)) {
poscontrol.slow_descent = from_alt > to_alt;
return true;
}
// default back to old method
poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt);
return true;
}
void ModeQRTL::update()
{
plane.mode_qstabilize.update();
}
/*
handle QRTL mode
*/
void ModeQRTL::run()
{
const uint32_t now = AP_HAL::millis();
if (quadplane.tailsitter.in_vtol_transition(now)) {
// Tailsitters in FW pull up phase of VTOL transition run FW controllers
Mode::run();
return;
}
switch (submode) {
case SubMode::climb: {
// request zero velocity
Vector2f vel, accel;
pos_control->input_vel_accel_xy(vel, accel);
quadplane.run_xy_controller();
// nav roll and pitch are controller by position controller
plane.nav_roll_cd = pos_control->get_roll_cd();
plane.nav_pitch_cd = pos_control->get_pitch_cd();
plane.quadplane.assign_tilt_to_fwd_thr();
if (quadplane.transition->set_VTOL_roll_pitch_limit(plane.nav_roll_cd, plane.nav_pitch_cd)) {
pos_control->set_externally_limited_xy();
}
// weathervane with no pilot input
quadplane.disable_yaw_rate_time_constant();
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
quadplane.get_weathervane_yaw_rate_cds());
// climb at full WP nav speed
quadplane.set_climb_rate_cms(quadplane.wp_nav->get_default_speed_up());
quadplane.run_z_controller();
// Climb done when stopping point reaches target altitude
Vector3p stopping_point;
pos_control->get_stopping_point_z_cm(stopping_point.z);
Location stopping_loc = Location(stopping_point.tofloat(), Location::AltFrame::ABOVE_ORIGIN);
ftype alt_diff;
if (!stopping_loc.get_alt_distance(plane.next_WP_loc, alt_diff) || is_positive(alt_diff)) {
// climb finished or cant get alt diff, head home
submode = SubMode::RTL;
plane.prev_WP_loc = plane.current_loc;
int32_t RTL_alt_abs_cm = plane.home.alt + quadplane.qrtl_alt*100UL;
Location destination = plane.calc_best_rally_or_home_location(plane.current_loc, RTL_alt_abs_cm);
const float dist = plane.current_loc.get_distance(destination);
const float radius = get_VTOL_return_radius();
if (dist < radius) {
// if close to home return at current target altitude
int32_t target_alt_abs_cm;
if (plane.next_WP_loc.get_alt_cm(Location::AltFrame::ABSOLUTE, target_alt_abs_cm)) {
RTL_alt_abs_cm = MIN(RTL_alt_abs_cm, target_alt_abs_cm);
}
gcs().send_text(MAV_SEVERITY_INFO,"VTOL position1 d=%.1f r=%.1f", dist, radius);
poscontrol.set_state(QuadPlane::QPOS_POSITION1);
}
plane.do_RTL(RTL_alt_abs_cm);
quadplane.poscontrol_init_approach();
if (plane.current_loc.get_alt_distance(plane.next_WP_loc, alt_diff)) {
poscontrol.slow_descent = is_positive(alt_diff);
} else {
// default back to old method
poscontrol.slow_descent = (plane.current_loc.alt > plane.next_WP_loc.alt);
}
}
break;
}
case SubMode::RTL: {
quadplane.vtol_position_controller();
if (poscontrol.get_state() > QuadPlane::QPOS_POSITION2) {
// change target altitude to home alt
plane.next_WP_loc.alt = plane.home.alt;
}
if (poscontrol.get_state() >= QuadPlane::QPOS_POSITION2) {
// start landing logic
quadplane.verify_vtol_land();
}
// when in approach allow stick mixing
if (quadplane.poscontrol.get_state() == QuadPlane::QPOS_AIRBRAKE ||
quadplane.poscontrol.get_state() == QuadPlane::QPOS_APPROACH) {
plane.stabilize_stick_mixing_fbw();
}
break;
}
}
// Stabilize with fixed wing surfaces
plane.stabilize_roll();
plane.stabilize_pitch();
}
/*
update target altitude for QRTL profile
*/
void ModeQRTL::update_target_altitude()
{
/*
update height target in approach
*/
if ((submode != SubMode::RTL) || (plane.quadplane.poscontrol.get_state() != QuadPlane::QPOS_APPROACH)) {
Mode::update_target_altitude();
return;
}
/*
initially approach at RTL_ALT_CM, then drop down to QRTL_ALT based on maximum sink rate from TECS,
giving time to lose speed before we transition
*/
const float radius = MAX(fabsf(float(plane.aparm.loiter_radius)), fabsf(float(plane.g.rtl_radius)));
const float rtl_alt_delta = MAX(0, plane.g.RTL_altitude - plane.quadplane.qrtl_alt);
const float sink_time = rtl_alt_delta / MAX(0.6*plane.TECS_controller.get_max_sinkrate(), 1);
const float sink_dist = plane.aparm.airspeed_cruise * sink_time;
const float dist = plane.auto_state.wp_distance;
const float rad_min = 2*radius;
const float rad_max = 20*radius;
float alt = linear_interpolate(0, rtl_alt_delta,
dist,
rad_min, MAX(rad_min, MIN(rad_max, rad_min+sink_dist)));
Location loc = plane.next_WP_loc;
loc.alt += alt*100;
plane.set_target_altitude_location(loc);
}
// only nudge during approach
bool ModeQRTL::allows_throttle_nudging() const
{
return (submode == SubMode::RTL) && (plane.quadplane.poscontrol.get_state() == QuadPlane::QPOS_APPROACH);
}
// Return the radius from destination at which pure VTOL flight should be used, no transition to FW
float ModeQRTL::get_VTOL_return_radius() const
{
return MAX(fabsf(float(plane.aparm.loiter_radius)), fabsf(float(plane.g.rtl_radius))) * 1.5;
}
#endif