Ardupilot2/libraries/AP_Limits/AP_Limits.cpp
2012-08-21 19:03:32 -07:00

208 lines
5.8 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/// @file ap_limits.cpp
/// @brief Imposes limits on location (geofence), altitude and other parameters.
/// Each breach will trigger an action or set of actions to recover. Adapted from geofence.
/// @author Andrew Tridgell
/// Andreas Antonopoulos
#include <AP_Limits.h>
#include <AP_Limit_Module.h>
const AP_Param::GroupInfo AP_Limits::var_info[] PROGMEM = {
// @Param: ENABLED
// @DisplayName: Enable Limits Library
// @Description: Setting this to Enabled(1) will enable the limits system
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("ENABLED", 0, AP_Limits, _enabled, 0),
// @Param: REQUIRED
// @DisplayName: Limits Library Required
// @Description: Setting this to 1 will enable the limits pre-arm checklist
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("REQUIRED", 1, AP_Limits, _required, 0),
// @Param: DEBUG
// @DisplayName: Enable Limits Debug
// @Description: Setting this to 1 will turn on debugging messages on the console and via MAVLink STATUSTEXT messages
// @Values: 0:Disabled,1:Enabled
// @User: Standard
AP_GROUPINFO("DEBUG", 2, AP_Limits, _debug, 0),
// @Param: SAFETIME
// @DisplayName: Limits Safetime
// @Description: Automatic return of controls to pilot. Set to 0 to disable (full RTL) or a number of seconds after complete recovery to return the controls to the pilot in STABILIZE
// @Values: 0:Disabled,1-255:Seconds before returning control
// @User: Standard
AP_GROUPINFO("SAFETIME", 3, AP_Limits, _safetime, 0),
// @Param: CHANNEL
// @DisplayName: Limits Channel
// @Description: Channel for Limits on/off control. If channel exceeds LIMITS_ENABLE_PWM, it turns limits on, and vice-versa.
// @Range: 1-8
// @User: Standard
AP_GROUPINFO("CHANNEL", 4, AP_Limits, _channel, 0),
// @Param: RECMODE
// @DisplayName: Limits Recovery Mode
// @Description: Select how Limits should "recover". Set to 0 for RTL-like mode, where the vehicle navigates back to home until it is "safe". Set to 1, for bounce-mode, where the vehicle will hold position when it hits a limit. RTL mode is better for large fenced areas, Bounce mode for smaller spaces. Note: RTL mode will cause the vehicle to yaw 180 degrees (turn around) to navigate towards home when it hits a limit.
// @Values: 0:RTL mode, 1: Bounce mode
// @User: Standard
AP_GROUPINFO("RECMODE", 5, AP_Limits, _recmode, 0),
AP_GROUPEND
};
AP_Limits::AP_Limits() {
last_trigger = 0;
last_action = 0;
last_recovery = 0;
last_clear = 0;
last_status_update = 0;
breach_count = 0;
mods_enabled = 0;
mods_required = 0;
mods_triggered = 0;
mods_recovering = 0;
old_mode_switch = 0;
_channel = 0;
_state = LIMITS_INIT;
}
void AP_Limits::modules(AP_Limit_Module *m)
{
_modules_head = m;
}
bool AP_Limits::init() {
AP_Limit_Module *m = modules_first();
while (m) {
m->init();
m = modules_next();
}
return true;
}
bool AP_Limits::enabled() {
return _enabled;
}
bool AP_Limits::debug() {
return _debug;
}
AP_Limit_Module *AP_Limits::modules_first() {
_modules_current = _modules_head; // reset current to head of list
return _modules_head;
}
AP_Limit_Module *AP_Limits::modules_current() {
return _modules_current;
}
AP_Limit_Module *AP_Limits::modules_next() {
if (_modules_current) {
_modules_current = _modules_current->next(); // move to "next" (which might be NULL)
}
return _modules_current;
}
uint8_t AP_Limits::modules_count() {
_modules_count = 0;
AP_Limit_Module *m = _modules_head;
while (m) {
_modules_count++;
m = m->next();
}
return _modules_count;
}
AP_Limit_Module *AP_Limits::modules_last() {
AP_Limit_Module *m = _modules_head;
while (m && m->next()) {
m = m->next();
}
return m;
}
void AP_Limits::modules_add(AP_Limit_Module *m) {
if (_modules_head) { // if there is a module linked
modules_last()->link(m); // add to the end of the list
}
else {
_modules_head = m; // otherwise, this will be the "head"
}
}
bool AP_Limits::required() {
return _required;
}
bool AP_Limits::check_all() {
return (bool) check_triggered(false); // required=false, means "all"
}
bool AP_Limits::check_required() {
return (bool) check_triggered(true); // required=true, means "only required modules"
}
bool AP_Limits::check_triggered(bool only_required) {
// check all enabled modules for triggered limits
AP_Limit_Module *mod = _modules_head;
// reset bit fields
mods_triggered = 0;
mods_enabled = 0;
mods_required = 0;
while (mod) {
unsigned module_id = mod->get_module_id();
// We check enabled, triggered and required across all modules
// We set all the bit-fields each time we check, keeping them up to date
if (mod->enabled()) {
mods_enabled |= module_id;
if (mod->required()) mods_required |= module_id;
if (mod->triggered()) mods_triggered |= module_id;
}
mod = mod->next();
}
if (only_required) {
return (bool) (mods_required & mods_triggered); // just modules that are both required AND triggered. (binary AND)
}
else return (bool) (mods_triggered);
}
AP_Int8 AP_Limits::state() {
return _state;
}
AP_Int8 AP_Limits::safetime() {
return _safetime;
}
void AP_Limits::set_state(int s) {
_state = (int) s;
}
AP_Int8 AP_Limits::channel() {
return _channel;
}
AP_Int8 AP_Limits::recmode() {
return _recmode;
}