Ardupilot2/libraries/AP_PeriodicProcess/AP_TimerProcess.cpp
2012-09-10 11:37:58 +09:00

157 lines
4.2 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "AP_TimerProcess.h"
extern "C" {
#include <inttypes.h>
#include <stdint.h>
#include <avr/interrupt.h>
}
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WConstants.h"
#endif
uint8_t AP_TimerProcess::_period;
ap_procedure AP_TimerProcess::_proc[AP_TIMERPROCESS_MAX_PROCS];
ap_procedure AP_TimerProcess::_failsafe;
ap_procedure AP_TimerProcess::_queued_proc = NULL;
bool AP_TimerProcess::_in_timer_call;
uint8_t AP_TimerProcess::_pidx = 0;
bool AP_TimerProcess::_suspended;
AP_TimerProcess::AP_TimerProcess(uint8_t period)
{
_period = period;
}
void AP_TimerProcess::init( Arduino_Mega_ISR_Registry * isr_reg )
{
// Enable Timer2 Overflow interrupt to trigger process.
TIMSK2 = 0; // Disable interrupts
TCCR2A = 0; // normal counting mode
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of clk/256
TCNT2 = 0; // Set count to zero, so it goes off right away.
TIFR2 = _BV(TOV2); // clear pending interrupts;
TIMSK2 = _BV(TOIE2); // enable the overflow interrupt
_failsafe = NULL;
_suspended = false;
_in_timer_call = false;
for (uint8_t i = 0; i < AP_TIMERPROCESS_MAX_PROCS; i++)
_proc[i] = NULL;
isr_reg->register_signal( ISR_REGISTRY_TIMER2_OVF, AP_TimerProcess::run);
}
/*
* register a process to be called at the timer interrupt rate
*/
void AP_TimerProcess::register_process(ap_procedure proc)
{
// see if its already registered (due to double initialisation
// of a driver)
for (uint8_t i=0; i<_pidx; i++) {
if (_proc[i] == proc) return;
}
cli();
if (_pidx < AP_TIMERPROCESS_MAX_PROCS)
_proc[_pidx++] = proc;
sei();
}
void AP_TimerProcess::set_failsafe(ap_procedure proc)
{
_failsafe = proc;
}
/*
* queue a process to be run as soon as any currently running ap_processes complete
*/
bool AP_TimerProcess::queue_process(ap_procedure proc)
{
// check if we are running any ap_processes
if( _in_timer_call || _suspended ) {
// queue the process to run after current processes finish
_queued_proc = proc;
return false;
}else{
// run process immediately
_suspended = true;
proc(micros());
_suspended = false;
return true;
}
}
void AP_TimerProcess::suspend_timer(void)
{
_suspended = true;
}
void AP_TimerProcess::resume_timer(void)
{
_suspended = false;
}
void AP_TimerProcess::run(void)
{
// we enable the interrupt again immediately and also enable
// interrupts. This allows other time critical interrupts to
// run (such as the serial receive interrupt). We catch the
// timer calls taking too long using _in_timer_call.
// This approach also gives us a nice uniform spacing between
// timer calls
TCNT2 = _period;
sei();
uint32_t tnow = micros();
if (_in_timer_call) {
// the timer calls took longer than the period of the
// timer. This is bad, and may indicate a serious
// driver failure. We can't just call the drivers
// again, as we could run out of stack. So we only
// call the _failsafe call. It's job is to detect if
// the drivers or the main loop are indeed dead and to
// activate whatever failsafe it thinks may help if
// need be. We assume the failsafe code can't
// block. If it does then we will recurse and die when
// we run out of stack
if (_failsafe != NULL) {
_failsafe(tnow);
}
return;
}
_in_timer_call = true;
if (!_suspended) {
// now call the timer based drivers
for (int i = 0; i < _pidx; i++) {
if (_proc[i] != NULL) {
_proc[i](tnow);
}
}
// run any queued processes
cli();
ap_procedure qp = _queued_proc;
_queued_proc = NULL;
sei();
if( qp != NULL ) {
_suspended = true;
qp(tnow);
_suspended = false;
}
}
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe(tnow);
}
_in_timer_call = false;
}