Ardupilot2/APMrover2/sensors.cpp
Grant Morphett a00edcbbb6 Rover: sonar_trigger_cm of 0 will now only log
This will enable users of Rover to plug their sonar's in (or any other
device into the 3.3v ADC) and log the data but not use the data in
navigation and obstacle avoidance.
2016-06-01 10:19:40 +10:00

122 lines
3.9 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Rover.h"
void Rover::init_barometer(bool full_calibration)
{
gcs_send_text(MAV_SEVERITY_INFO, "Calibrating barometer");
if (full_calibration) {
barometer.calibrate();
} else {
barometer.update_calibration();
}
gcs_send_text(MAV_SEVERITY_INFO, "Barometer calibration complete");
}
void Rover::init_sonar(void)
{
sonar.init();
}
// read_battery - reads battery voltage and current and invokes failsafe
// should be called at 10hz
void Rover::read_battery(void)
{
battery.read();
}
// read the receiver RSSI as an 8 bit number for MAVLink
// RC_CHANNELS_SCALED message
void Rover::read_receiver_rssi(void)
{
receiver_rssi = rssi.read_receiver_rssi_uint8();
}
//Calibrate compass
void Rover::compass_cal_update() {
if (!hal.util->get_soft_armed()) {
compass.compass_cal_update();
}
}
// Accel calibration
void Rover::accel_cal_update() {
if (hal.util->get_soft_armed()) {
return;
}
ins.acal_update();
// check if new trim values, and set them float trim_roll, trim_pitch;
float trim_roll,trim_pitch;
if(ins.get_new_trim(trim_roll, trim_pitch)) {
ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0));
}
}
// read the sonars
void Rover::read_sonars(void)
{
sonar.update();
if (sonar.status() == RangeFinder::RangeFinder_NotConnected) {
// this makes it possible to disable sonar at runtime
return;
}
if (sonar.has_data(1)) {
// we have two sonars
obstacle.sonar1_distance_cm = sonar.distance_cm(0);
obstacle.sonar2_distance_cm = sonar.distance_cm(1);
if (obstacle.sonar1_distance_cm < (uint16_t)g.sonar_trigger_cm &&
obstacle.sonar1_distance_cm < (uint16_t)obstacle.sonar2_distance_cm) {
// we have an object on the left
if (obstacle.detected_count < 127) {
obstacle.detected_count++;
}
if (obstacle.detected_count == g.sonar_debounce) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar1 obstacle %u cm",
(unsigned)obstacle.sonar1_distance_cm);
}
obstacle.detected_time_ms = AP_HAL::millis();
obstacle.turn_angle = g.sonar_turn_angle;
} else if (obstacle.sonar2_distance_cm < (uint16_t)g.sonar_trigger_cm) {
// we have an object on the right
if (obstacle.detected_count < 127) {
obstacle.detected_count++;
}
if (obstacle.detected_count == g.sonar_debounce) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar2 obstacle %u cm",
(unsigned)obstacle.sonar2_distance_cm);
}
obstacle.detected_time_ms = AP_HAL::millis();
obstacle.turn_angle = -g.sonar_turn_angle;
}
} else {
// we have a single sonar
obstacle.sonar1_distance_cm = sonar.distance_cm(0);
obstacle.sonar2_distance_cm = 0;
if (obstacle.sonar1_distance_cm < (uint16_t)g.sonar_trigger_cm) {
// obstacle detected in front
if (obstacle.detected_count < 127) {
obstacle.detected_count++;
}
if (obstacle.detected_count == g.sonar_debounce) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Sonar obstacle %u cm",
(unsigned)obstacle.sonar1_distance_cm);
}
obstacle.detected_time_ms = AP_HAL::millis();
obstacle.turn_angle = g.sonar_turn_angle;
}
}
Log_Write_Sonar();
// no object detected - reset after the turn time
if (obstacle.detected_count >= g.sonar_debounce &&
AP_HAL::millis() > obstacle.detected_time_ms + g.sonar_turn_time*1000) {
gcs_send_text_fmt(MAV_SEVERITY_INFO, "Obstacle passed");
obstacle.detected_count = 0;
obstacle.turn_angle = 0;
}
}