Ardupilot2/libraries/SITL/SIM_VectorNav.cpp
BLash 50980ee03e AP_ExternalAHRS_VectorNav: Update SIM to match new message definitions
Redefine messages to 3 INS packets, and send as appropriate
Resolve SITL failures due to too-long logger message headers
2024-07-29 15:52:29 +10:00

297 lines
8.2 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simulate VectorNav serial AHRS
*/
#include "SIM_VectorNav.h"
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <AP_Common/NMEA.h>
using namespace SITL;
VectorNav::VectorNav() :
SerialDevice::SerialDevice()
{
}
struct PACKED VN_IMU_packet_sim {
static constexpr uint8_t header[]{0x01, 0x21, 0x07};
uint64_t timeStartup;
float gyro[3];
float accel[3];
float uncompAccel[3];
float uncompAngRate[3];
float mag[3];
float temp;
float pressure;
};
constexpr uint8_t VN_IMU_packet_sim::header[];
struct PACKED VN_INS_ekf_packet_sim {
static constexpr uint8_t header[]{0x31, 0x01, 0x00, 0x06, 0x01, 0x13, 0x06};
uint64_t timeStartup;
float ypr[3];
float quaternion[4];
float yprU[3];
uint16_t insStatus;
double posLla[3];
float velNed[3];
float posU;
float velU;
};
constexpr uint8_t VN_INS_ekf_packet_sim::header[];
struct PACKED VN_INS_gnss_packet_sim {
static constexpr uint8_t header[]{0x49, 0x03, 0x00, 0xB8, 0x26, 0x18, 0x00};
uint64_t timeStartup;
uint64_t timeGps;
uint8_t numSats1;
uint8_t fix1;
double posLla1[3];
float velNed1[3];
float posU1[3];
float velU1;
float dop1[7];
uint8_t numSats2;
uint8_t fix2;
};
constexpr uint8_t VN_INS_gnss_packet_sim::header[];
/*
get timeval using simulation time
*/
static void simulation_timeval(struct timeval *tv)
{
uint64_t now = AP_HAL::micros64();
static uint64_t first_usec;
static struct timeval first_tv;
if (first_usec == 0) {
first_usec = now;
first_tv.tv_sec = AP::sitl()->start_time_UTC;
}
*tv = first_tv;
tv->tv_sec += now / 1000000ULL;
uint64_t new_usec = tv->tv_usec + (now % 1000000ULL);
tv->tv_sec += new_usec / 1000000ULL;
tv->tv_usec = new_usec % 1000000ULL;
}
void VectorNav::send_imu_packet(void)
{
const auto &fdm = _sitl->state;
struct VN_IMU_packet_sim pkt {};
pkt.timeStartup = AP_HAL::micros() * 1e3;
const float gyro_noise = 0.05;
pkt.gyro[0] = radians(fdm.rollRate + rand_float() * gyro_noise);
pkt.gyro[1] = radians(fdm.pitchRate + rand_float() * gyro_noise);
pkt.gyro[2] = radians(fdm.yawRate + rand_float() * gyro_noise);
pkt.accel[0] = fdm.xAccel;
pkt.accel[1] = fdm.yAccel;
pkt.accel[2] = fdm.zAccel;
pkt.uncompAccel[0] = fdm.xAccel;
pkt.uncompAccel[1] = fdm.yAccel;
pkt.uncompAccel[2] = fdm.zAccel;
pkt.uncompAngRate[0] = radians(fdm.rollRate + gyro_noise * rand_float());
pkt.uncompAngRate[1] = radians(fdm.pitchRate + gyro_noise * rand_float());
pkt.uncompAngRate[2] = radians(fdm.yawRate + gyro_noise * rand_float());
pkt.mag[0] = fdm.bodyMagField.x*0.001;
pkt.mag[1] = fdm.bodyMagField.y*0.001;
pkt.mag[2] = fdm.bodyMagField.z*0.001;
pkt.temp = AP_Baro::get_temperatureC_for_alt_amsl(fdm.altitude);
const float pressure_Pa = AP_Baro::get_pressure_for_alt_amsl(fdm.altitude);
pkt.pressure = pressure_Pa*0.001 + rand_float() * 0.01;
const uint8_t sync_byte = 0xFA;
write_to_autopilot((char *)&sync_byte, 1);
write_to_autopilot((char *)&VN_IMU_packet_sim::header, sizeof(VN_IMU_packet_sim::header));
write_to_autopilot((char *)&pkt, sizeof(pkt));
uint16_t crc = crc16_ccitt(&VN_IMU_packet_sim::header[0], sizeof(VN_IMU_packet_sim::header), 0);
crc = crc16_ccitt((const uint8_t *)&pkt, sizeof(pkt), crc);
uint16_t crc2;
swab(&crc, &crc2, 2);
write_to_autopilot((char *)&crc2, sizeof(crc2));
}
void VectorNav::send_ins_ekf_packet(void)
{
const auto &fdm = _sitl->state;
struct VN_INS_ekf_packet_sim pkt {};
pkt.timeStartup = AP_HAL::micros() * 1e3;
pkt.ypr[0] = fdm.yawDeg;
pkt.ypr[1] = fdm.pitchDeg;
pkt.ypr[2] = fdm.rollDeg;
pkt.quaternion[0] = fdm.quaternion.q2;
pkt.quaternion[1] = fdm.quaternion.q3;
pkt.quaternion[2] = fdm.quaternion.q4;
pkt.quaternion[3] = fdm.quaternion.q1;
pkt.yprU[0] = 0.03;
pkt.yprU[1] = 0.03;
pkt.yprU[2] = 0.15;
pkt.insStatus = 0x0306;
pkt.posLla[0] = fdm.latitude;
pkt.posLla[1] = fdm.longitude;
pkt.posLla[2] = fdm.altitude;
pkt.velNed[0] = fdm.speedN;
pkt.velNed[1] = fdm.speedE;
pkt.velNed[2] = fdm.speedD;
pkt.posU = 0.5;
pkt.velU = 0.25;
const uint8_t sync_byte = 0xFA;
write_to_autopilot((char *)&sync_byte, 1);
write_to_autopilot((char *)&VN_INS_ekf_packet_sim::header, sizeof(VN_INS_ekf_packet_sim::header));
write_to_autopilot((char *)&pkt, sizeof(pkt));
uint16_t crc = crc16_ccitt(&VN_INS_ekf_packet_sim::header[0], sizeof(VN_INS_ekf_packet_sim::header), 0);
crc = crc16_ccitt((const uint8_t *)&pkt, sizeof(pkt), crc);
uint16_t crc2;
swab(&crc, &crc2, 2);
write_to_autopilot((char *)&crc2, sizeof(crc2));
}
void VectorNav::send_ins_gnss_packet(void)
{
const auto &fdm = _sitl->state;
struct VN_INS_gnss_packet_sim pkt {};
pkt.timeStartup = AP_HAL::micros() * 1e3;
struct timeval tv;
simulation_timeval(&tv);
pkt.timeGps = tv.tv_usec * 1000ULL;
pkt.numSats1 = 19;
pkt.fix1 = 3;
pkt.posLla1[0] = fdm.latitude;
pkt.posLla1[1] = fdm.longitude;
pkt.posLla1[2] = fdm.altitude;
pkt.velNed1[0] = fdm.speedN;
pkt.velNed1[1] = fdm.speedE;
pkt.velNed1[2] = fdm.speedD;
pkt.posU1[0] = 1;
pkt.posU1[0] = 1;
pkt.posU1[0] = 1.5;
pkt.velNed1[0] = 0.05;
pkt.velNed1[0] = 0.05;
pkt.velNed1[0] = 0.05;
// pkt.dop1 =
pkt.numSats2 = 18;
pkt.fix2 = 3;
const uint8_t sync_byte = 0xFA;
write_to_autopilot((char *)&sync_byte, 1);
write_to_autopilot((char *)&VN_INS_gnss_packet_sim::header, sizeof(VN_INS_gnss_packet_sim::header));
write_to_autopilot((char *)&pkt, sizeof(pkt));
uint16_t crc = crc16_ccitt(&VN_INS_gnss_packet_sim::header[0], sizeof(VN_INS_gnss_packet_sim::header), 0);
crc = crc16_ccitt((const uint8_t *)&pkt, sizeof(pkt), crc);
uint16_t crc2;
swab(&crc, &crc2, 2);
write_to_autopilot((char *)&crc2, sizeof(crc2));
}
void VectorNav::nmea_printf(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
char *s = nmea_vaprintf(fmt, ap);
va_end(ap);
if (s != nullptr) {
write_to_autopilot((const char*)s, strlen(s));
free(s);
}
}
/*
send VectorNav data
*/
void VectorNav::update(void)
{
if (!init_sitl_pointer()) {
return;
}
uint32_t now = AP_HAL::micros();
if (now - last_imu_pkt_us >= 20000) {
last_imu_pkt_us = now;
send_imu_packet();
}
if (now - last_ekf_pkt_us >= 20000) {
last_ekf_pkt_us = now;
send_ins_ekf_packet();
}
if (now - last_gnss_pkt_us >= 200000) {
last_gnss_pkt_us = now;
send_ins_gnss_packet();
}
char receive_buf[50];
ssize_t n = read_from_autopilot(&receive_buf[0], ARRAY_SIZE(receive_buf));
if (n <= 0) {
return;
}
// avoid parsing the NMEA stream here by making assumptions about
// how we receive configuration strings. Generally we can just
// echo back the configuration string to make the driver happy.
if (n >= 9) {
// intercept device-version query, respond with simulated version:
const char *ver_query_string = "$VNRRG,01";
if (strncmp(receive_buf, ver_query_string, strlen(ver_query_string)) == 0) {
nmea_printf("$VNRRG,01,VN-300-SITL");
// consume the query so we don't "respond" twice:
memmove(&receive_buf[0], &receive_buf[strlen(ver_query_string)], n - strlen(ver_query_string));
n -= strlen(ver_query_string);
}
}
write_to_autopilot(receive_buf, n);
}