Ardupilot2/libraries/GCS_MAVLink/GCS_Param.cpp
Peter Barker 4eba6d4fe2 GCS_MAVLink: exempt requested parameters from buffer space reservation
Fixes a problem where we reserve space to send replies but then do not
bypass the reserved-space checks when sending them.
2019-03-19 10:37:09 +11:00

437 lines
13 KiB
C++

/*
GCS MAVLink functions related to parameter handling
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_AHRS/AP_AHRS.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_Common/AP_FWVersion.h"
#include "GCS.h"
extern const AP_HAL::HAL& hal;
// queue of pending parameter requests and replies
ObjectBuffer<GCS_MAVLINK::pending_param_request> GCS_MAVLINK::param_requests(20);
ObjectBuffer<GCS_MAVLINK::pending_param_reply> GCS_MAVLINK::param_replies(5);
bool GCS_MAVLINK::param_timer_registered;
/**
* @brief Send the next pending parameter, called from deferred message
* handling code
*/
void
GCS_MAVLINK::queued_param_send()
{
if (!initialised) {
return;
}
// send parameter async replies
uint8_t async_replies_sent_count = send_parameter_async_replies();
const uint32_t tnow = AP_HAL::millis();
const uint32_t tstart = AP_HAL::micros();
// use at most 30% of bandwidth on parameters. The constant 26 is
// 1/(1000 * 1/8 * 0.001 * 0.3)
const uint32_t link_bw = _port->bw_in_kilobytes_per_second();
uint32_t bytes_allowed = link_bw * (tnow - _queued_parameter_send_time_ms) * 26;
const uint16_t size_for_one_param_value_msg = MAVLINK_MSG_ID_PARAM_VALUE_LEN + packet_overhead();
if (bytes_allowed < size_for_one_param_value_msg) {
bytes_allowed = size_for_one_param_value_msg;
}
if (bytes_allowed > comm_get_txspace(chan)) {
bytes_allowed = comm_get_txspace(chan);
}
uint32_t count = bytes_allowed / size_for_one_param_value_msg;
// when we don't have flow control we really need to keep the
// param download very slow, or it tends to stall
if (!have_flow_control() && count > 5) {
count = 5;
}
if (async_replies_sent_count >= count) {
return;
}
count -= async_replies_sent_count;
if (_queued_parameter == nullptr) {
return;
}
while (count && _queued_parameter != nullptr) {
char param_name[AP_MAX_NAME_SIZE];
_queued_parameter->copy_name_token(_queued_parameter_token, param_name, sizeof(param_name), true);
mavlink_msg_param_value_send(
chan,
param_name,
_queued_parameter->cast_to_float(_queued_parameter_type),
mav_param_type(_queued_parameter_type),
_queued_parameter_count,
_queued_parameter_index);
_queued_parameter = AP_Param::next_scalar(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index++;
if (AP_HAL::micros() - tstart > 1000) {
// don't use more than 1ms sending blocks of parameters
break;
}
count--;
}
_queued_parameter_send_time_ms = tnow;
}
/*
return true if a channel has flow control
*/
bool GCS_MAVLINK::have_flow_control(void)
{
if (_port == nullptr) {
return false;
}
if (_port->get_flow_control() != AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE) {
return true;
}
if (chan == MAVLINK_COMM_0) {
// assume USB console has flow control
return hal.gpio->usb_connected();
}
return false;
}
/*
handle a request to change stream rate. Note that copter passes in
save==false so we don't want the save to happen when the user connects the
ground station.
*/
void GCS_MAVLINK::handle_request_data_stream(mavlink_message_t *msg)
{
mavlink_request_data_stream_t packet;
mavlink_msg_request_data_stream_decode(msg, &packet);
int16_t freq = 0; // packet frequency
if (packet.start_stop == 0)
freq = 0; // stop sending
else if (packet.start_stop == 1)
freq = packet.req_message_rate; // start sending
else
return;
// if stream_id is still NUM_STREAMS at the end of this switch
// block then either we set stream rates for all streams, or we
// were asked to set the streamrate for an unrecognised stream
streams stream_id = NUM_STREAMS;
switch (packet.req_stream_id) {
case MAV_DATA_STREAM_ALL:
for (uint8_t i=0; i<NUM_STREAMS; i++) {
if (i == STREAM_PARAMS) {
// don't touch parameter streaming rate; it is
// considered "internal".
continue;
}
if (persist_streamrates()) {
streamRates[i].set_and_save_ifchanged(freq);
} else {
streamRates[i].set(freq);
}
initialise_message_intervals_for_stream((streams)i);
}
break;
case MAV_DATA_STREAM_RAW_SENSORS:
stream_id = STREAM_RAW_SENSORS;
break;
case MAV_DATA_STREAM_EXTENDED_STATUS:
stream_id = STREAM_EXTENDED_STATUS;
break;
case MAV_DATA_STREAM_RC_CHANNELS:
stream_id = STREAM_RC_CHANNELS;
break;
case MAV_DATA_STREAM_RAW_CONTROLLER:
stream_id = STREAM_RAW_CONTROLLER;
break;
case MAV_DATA_STREAM_POSITION:
stream_id = STREAM_POSITION;
break;
case MAV_DATA_STREAM_EXTRA1:
stream_id = STREAM_EXTRA1;
break;
case MAV_DATA_STREAM_EXTRA2:
stream_id = STREAM_EXTRA2;
break;
case MAV_DATA_STREAM_EXTRA3:
stream_id = STREAM_EXTRA3;
break;
}
if (stream_id == NUM_STREAMS) {
// asked to set rate on unknown stream (or all were set already)
return;
}
AP_Int16 *rate = &streamRates[stream_id];
if (rate != nullptr) {
if (persist_streamrates()) {
rate->set_and_save_ifchanged(freq);
} else {
rate->set(freq);
}
initialise_message_intervals_for_stream(stream_id);
}
}
void GCS_MAVLINK::handle_param_request_list(mavlink_message_t *msg)
{
if (!params_ready()) {
return;
}
mavlink_param_request_list_t packet;
mavlink_msg_param_request_list_decode(msg, &packet);
// requesting parameters is a convenient way to get extra information
send_banner();
// Start sending parameters - next call to ::update will kick the first one out
_queued_parameter = AP_Param::first(&_queued_parameter_token, &_queued_parameter_type);
_queued_parameter_index = 0;
_queued_parameter_count = AP_Param::count_parameters();
_queued_parameter_send_time_ms = AP_HAL::millis(); // avoid initial flooding
}
void GCS_MAVLINK::handle_param_request_read(mavlink_message_t *msg)
{
if (param_requests.space() == 0) {
// we can't process this right now, drop it
return;
}
mavlink_param_request_read_t packet;
mavlink_msg_param_request_read_decode(msg, &packet);
/*
we reserve some space for sending parameters if the client ever
fails to get a parameter due to lack of space
*/
uint32_t saved_reserve_param_space_start_ms = reserve_param_space_start_ms;
reserve_param_space_start_ms = 0;
if (!HAVE_PAYLOAD_SPACE(chan, PARAM_VALUE)) {
reserve_param_space_start_ms = AP_HAL::millis();
return;
}
reserve_param_space_start_ms = saved_reserve_param_space_start_ms;
struct pending_param_request req;
req.chan = chan;
req.param_index = packet.param_index;
memcpy(req.param_name, packet.param_id, MIN(sizeof(packet.param_id), sizeof(req.param_name)));
req.param_name[AP_MAX_NAME_SIZE] = 0;
// queue it for processing by io timer
param_requests.push(req);
// speaking of which, we'd best make sure it is running:
if (!param_timer_registered) {
param_timer_registered = true;
hal.scheduler->register_io_process(FUNCTOR_BIND_MEMBER(&GCS_MAVLINK::param_io_timer, void));
}
}
void GCS_MAVLINK::handle_param_set(mavlink_message_t *msg)
{
mavlink_param_set_t packet;
mavlink_msg_param_set_decode(msg, &packet);
enum ap_var_type var_type;
// set parameter
AP_Param *vp;
char key[AP_MAX_NAME_SIZE+1];
strncpy(key, (char *)packet.param_id, AP_MAX_NAME_SIZE);
key[AP_MAX_NAME_SIZE] = 0;
// find existing param so we can get the old value
vp = AP_Param::find(key, &var_type);
if (vp == nullptr) {
return;
}
float old_value = vp->cast_to_float(var_type);
// set the value
vp->set_float(packet.param_value, var_type);
/*
we force the save if the value is not equal to the old
value. This copes with the use of override values in
constructors, such as PID elements. Otherwise a set to the
default value which differs from the constructor value doesn't
save the change
*/
bool force_save = !is_equal(packet.param_value, old_value);
// save the change
vp->save(force_save);
AP_Logger *AP_Logger = AP_Logger::get_singleton();
if (AP_Logger != nullptr) {
AP_Logger->Write_Parameter(key, vp->cast_to_float(var_type));
}
}
/*
send a parameter value message to all active MAVLink connections
*/
void GCS::send_parameter_value(const char *param_name, ap_var_type param_type, float param_value)
{
const uint8_t mavlink_active = GCS_MAVLINK::active_channel_mask();
for (uint8_t i=0; i<MAVLINK_COMM_NUM_BUFFERS; i++) {
if ((1U<<i) & mavlink_active) {
const mavlink_channel_t _chan = (mavlink_channel_t)(MAVLINK_COMM_0+i);
if (HAVE_PAYLOAD_SPACE(_chan, PARAM_VALUE)) {
mavlink_msg_param_value_send(
_chan,
param_name,
param_value,
mav_param_type(param_type),
AP_Param::count_parameters(),
-1);
}
}
}
// also log to AP_Logger
AP_Logger *dataflash = AP_Logger::get_singleton();
if (dataflash != nullptr) {
dataflash->Write_Parameter(param_name, param_value);
}
}
/*
timer callback for async parameter requests
*/
void GCS_MAVLINK::param_io_timer(void)
{
struct pending_param_request req;
// this is mostly a no-op, but doing this here means we won't
// block the main thread counting parameters (~30ms on PH)
AP_Param::count_parameters();
if (param_replies.space() == 0) {
// no room
return;
}
if (!param_requests.pop(req)) {
// nothing to do
return;
}
struct pending_param_reply reply;
AP_Param *vp;
if (req.param_index != -1) {
AP_Param::ParamToken token;
vp = AP_Param::find_by_index(req.param_index, &reply.p_type, &token);
if (vp == nullptr) {
return;
}
vp->copy_name_token(token, reply.param_name, AP_MAX_NAME_SIZE, true);
} else {
strncpy(reply.param_name, req.param_name, AP_MAX_NAME_SIZE+1);
vp = AP_Param::find(req.param_name, &reply.p_type);
if (vp == nullptr) {
return;
}
}
reply.chan = req.chan;
reply.param_name[AP_MAX_NAME_SIZE] = 0;
reply.value = vp->cast_to_float(reply.p_type);
reply.param_index = req.param_index;
reply.count = AP_Param::count_parameters();
// queue for transmission
param_replies.push(reply);
}
/*
send replies to PARAM_REQUEST_READ
*/
uint8_t GCS_MAVLINK::send_parameter_async_replies()
{
uint8_t async_replies_sent_count = 0;
while (async_replies_sent_count < 5) {
if (param_replies.empty()) {
// nothing to do
return async_replies_sent_count;
}
/*
we reserve some space for sending parameters if the client ever
fails to get a parameter due to lack of space
*/
uint32_t saved_reserve_param_space_start_ms = reserve_param_space_start_ms;
reserve_param_space_start_ms = 0; // bypass packet_overhead_chan reservation checking
if (!HAVE_PAYLOAD_SPACE(chan, PARAM_VALUE)) {
reserve_param_space_start_ms = AP_HAL::millis();
return async_replies_sent_count;
}
reserve_param_space_start_ms = saved_reserve_param_space_start_ms;
struct pending_param_reply reply;
if (!param_replies.pop(reply)) {
// internal error
return async_replies_sent_count;
}
mavlink_msg_param_value_send(
reply.chan,
reply.param_name,
reply.value,
mav_param_type(reply.p_type),
reply.count,
reply.param_index);
_queued_parameter_send_time_ms = AP_HAL::millis();
async_replies_sent_count++;
}
return async_replies_sent_count;
}
void GCS_MAVLINK::handle_common_param_message(mavlink_message_t *msg)
{
switch (msg->msgid) {
case MAVLINK_MSG_ID_PARAM_REQUEST_LIST:
handle_param_request_list(msg);
break;
case MAVLINK_MSG_ID_PARAM_SET:
handle_param_set(msg);
break;
case MAVLINK_MSG_ID_PARAM_REQUEST_READ:
handle_param_request_read(msg);
break;
}
}