Ardupilot2/libraries/AP_HAL_Linux/Scheduler.cpp

412 lines
10 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include "Scheduler.h"
#include "Storage.h"
#include "RCInput.h"
#include "UARTDriver.h"
#include "Util.h"
#include "SPIUARTDriver.h"
#include "RPIOUARTDriver.h"
#include <poll.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <sys/mman.h>
using namespace Linux;
extern const AP_HAL::HAL& hal;
#define APM_LINUX_TIMER_PRIORITY 15
#define APM_LINUX_UART_PRIORITY 14
#define APM_LINUX_RCIN_PRIORITY 13
#define APM_LINUX_MAIN_PRIORITY 12
#define APM_LINUX_TONEALARM_PRIORITY 11
#define APM_LINUX_IO_PRIORITY 10
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
#define APM_LINUX_UART_PERIOD 10000
#define APM_LINUX_RCIN_PERIOD 500
#define APM_LINUX_TONEALARM_PERIOD 10000
#define APM_LINUX_IO_PERIOD 20000
#else
#define APM_LINUX_UART_PERIOD 10000
#define APM_LINUX_RCIN_PERIOD 10000
#define APM_LINUX_TONEALARM_PERIOD 10000
#define APM_LINUX_IO_PERIOD 20000
#endif // CONFIG_HAL_BOARD_SUBTYPE
Scheduler::Scheduler()
{}
void Scheduler::_create_realtime_thread(pthread_t *ctx, int rtprio,
const char *name,
pthread_startroutine_t start_routine)
{
struct sched_param param = { .sched_priority = rtprio };
pthread_attr_t attr;
int r;
pthread_attr_init(&attr);
/*
we need to run as root to get realtime scheduling. Allow it to
run as non-root for debugging purposes, plus to allow the Replay
tool to run
*/
if (geteuid() == 0) {
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
pthread_attr_setschedparam(&attr, &param);
}
r = pthread_create(ctx, &attr, start_routine, this);
if (r != 0) {
hal.console->printf("Error creating thread '%s': %s\n",
name, strerror(r));
AP_HAL::panic("Failed to create thread");
}
pthread_attr_destroy(&attr);
if (name) {
pthread_setname_np(*ctx, name);
}
}
void Scheduler::init()
{
mlockall(MCL_CURRENT|MCL_FUTURE);
struct sched_param param = { .sched_priority = APM_LINUX_MAIN_PRIORITY };
sched_setscheduler(0, SCHED_FIFO, &param);
struct {
pthread_t *ctx;
int rtprio;
const char *name;
pthread_startroutine_t start_routine;
} *iter, table[] = {
{ .ctx = &_timer_thread_ctx,
.rtprio = APM_LINUX_TIMER_PRIORITY,
.name = "sched-timer",
.start_routine = &Linux::Scheduler::_timer_thread,
},
{ .ctx = &_uart_thread_ctx,
.rtprio = APM_LINUX_UART_PRIORITY,
.name = "sched-uart",
.start_routine = &Linux::Scheduler::_uart_thread,
},
{ .ctx = &_rcin_thread_ctx,
.rtprio = APM_LINUX_RCIN_PRIORITY,
.name = "sched-rcin",
.start_routine = &Linux::Scheduler::_rcin_thread,
},
{ .ctx = &_tonealarm_thread_ctx,
.rtprio = APM_LINUX_TONEALARM_PRIORITY,
.name = "sched-tonealarm",
.start_routine = &Linux::Scheduler::_tonealarm_thread,
},
{ .ctx = &_io_thread_ctx,
.rtprio = APM_LINUX_IO_PRIORITY,
.name = "sched-io",
.start_routine = &Linux::Scheduler::_io_thread,
},
{ }
};
if (geteuid() != 0) {
printf("WARNING: running as non-root. Will not use realtime scheduling\n");
}
for (iter = table; iter->ctx; iter++)
_create_realtime_thread(iter->ctx, iter->rtprio, iter->name,
iter->start_routine);
}
void Scheduler::_microsleep(uint32_t usec)
{
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = usec*1000UL;
while (nanosleep(&ts, &ts) == -1 && errno == EINTR) ;
}
void Scheduler::delay(uint16_t ms)
{
if (_stopped_clock_usec) {
return;
}
uint64_t start = AP_HAL::millis64();
while ((AP_HAL::millis64() - start) < ms) {
// this yields the CPU to other apps
_microsleep(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
void Scheduler::delay_microseconds(uint16_t us)
{
if (_stopped_clock_usec) {
return;
}
_microsleep(us);
}
void Scheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < LINUX_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < LINUX_SCHEDULER_MAX_IO_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::suspend_timer_procs()
{
if (!_timer_semaphore.take(0)) {
printf("Failed to take timer semaphore\n");
}
}
void Scheduler::resume_timer_procs()
{
_timer_semaphore.give();
}
void Scheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_semaphore.take(0)) {
printf("Failed to take timer semaphore in _run_timers\n");
}
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
//SPI UART use SPI
if (!((RPIOUARTDriver *)hal.uartC)->isExternal() )
{
((RPIOUARTDriver *)hal.uartC)->_timer_tick();
}
#endif
_timer_semaphore.give();
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe();
}
_in_timer_proc = false;
}
void *Scheduler::_timer_thread(void* arg)
{
Scheduler* sched = (Scheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
/*
this aims to run at an average of 1kHz, so that it can be used
to drive 1kHz processes without drift
*/
uint64_t next_run_usec = AP_HAL::micros64() + 1000;
while (true) {
uint64_t dt = next_run_usec - AP_HAL::micros64();
if (dt > 2000) {
// we've lost sync - restart
next_run_usec = AP_HAL::micros64();
} else {
sched->_microsleep(dt);
}
next_run_usec += 1000;
// run registered timers
sched->_run_timers(true);
}
return NULL;
}
void Scheduler::_run_io(void)
{
if (!_io_semaphore.take(0)) {
return;
}
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
_io_semaphore.give();
}
void *Scheduler::_rcin_thread(void *arg)
{
Scheduler* sched = (Scheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(APM_LINUX_RCIN_PERIOD);
RCInput::from(hal.rcin)->_timer_tick();
}
return NULL;
}
void *Scheduler::_uart_thread(void* arg)
{
Scheduler* sched = (Scheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(APM_LINUX_UART_PERIOD);
// process any pending serial bytes
UARTDriver::from(hal.uartA)->_timer_tick();
UARTDriver::from(hal.uartB)->_timer_tick();
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_RASPILOT
//SPI UART not use SPI
if (RPIOUARTDriver::from(hal.uartC)->isExternal()) {
RPIOUARTDriver::from(hal.uartC)->_timer_tick();
}
#else
UARTDriver::from(hal.uartC)->_timer_tick();
#endif
UARTDriver::from(hal.uartE)->_timer_tick();
}
return NULL;
}
void *Scheduler::_tonealarm_thread(void* arg)
{
Scheduler* sched = (Scheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(APM_LINUX_TONEALARM_PERIOD);
// process tone command
Util::from(hal.util)->_toneAlarm_timer_tick();
}
return NULL;
}
void *Scheduler::_io_thread(void* arg)
{
Scheduler* sched = (Scheduler *)arg;
while (sched->system_initializing()) {
poll(NULL, 0, 1);
}
while (true) {
sched->_microsleep(APM_LINUX_IO_PERIOD);
// process any pending storage writes
Storage::from(hal.storage)->_timer_tick();
// run registered IO procepsses
sched->_run_io();
}
return NULL;
}
bool Scheduler::in_timerprocess()
{
return _in_timer_proc;
}
void Scheduler::begin_atomic()
{}
void Scheduler::end_atomic()
{}
bool Scheduler::system_initializing() {
return !_initialized;
}
void Scheduler::system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called more than once");
}
_initialized = true;
}
void Scheduler::reboot(bool hold_in_bootloader)
{
exit(1);
}
void Scheduler::stop_clock(uint64_t time_usec)
{
if (time_usec >= _stopped_clock_usec) {
_stopped_clock_usec = time_usec;
_run_io();
}
}
#endif // CONFIG_HAL_BOARD