Ardupilot2/libraries/SITL/SIM_Scrimmage.cpp
Andrew Tridgell 67c506e75c SITL: use new atmospheric tables
and improve pitot handling
2024-05-07 21:19:06 +10:00

136 lines
3.6 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
simulator connector for Scrimmage simulator
*/
#include "SIM_Scrimmage.h"
#if HAL_SIM_SCRIMMAGE_ENABLED
#include <stdio.h>
#include <inttypes.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
namespace SITL {
Scrimmage::Scrimmage(const char *_frame_str) :
Aircraft(_frame_str),
prev_timestamp_us(0),
recv_sock(true),
send_sock(true)
{
}
void Scrimmage::set_interface_ports(const char* address, const int port_in, const int port_out)
{
fdm_port_in = port_in;
fdm_port_out = port_out;
fdm_address = address;
printf("ArduPilot sending to scrimmage on %s:%d\n",fdm_address, fdm_port_out);
printf("ArduPilot listening to scrimmage on %s:%d\n",fdm_address, fdm_port_in);
recv_sock.bind(fdm_address, fdm_port_in);
recv_sock.reuseaddress();
recv_sock.set_blocking(false);
send_sock.reuseaddress();
send_sock.set_blocking(false);
}
void Scrimmage::send_servos(const struct sitl_input &input)
{
servo_packet pkt;
for (int i = 0; i < MAX_NUM_SERVOS; i++) {
pkt.servos[i] = input.servos[i];
}
send_sock.sendto(&pkt, sizeof(servo_packet), fdm_address, fdm_port_out);
}
/*
receive an update from the FDM
This is a blocking function
*/
void Scrimmage::recv_fdm(const struct sitl_input &input)
{
fdm_packet pkt;
// wait for packet from scrimmage
while (recv_sock.recv(&pkt, sizeof(pkt), 100) != sizeof(pkt));
// auto-adjust to simulation frame rate
uint64_t dt_us = 0;
if (pkt.timestamp_us > prev_timestamp_us)
dt_us = pkt.timestamp_us - prev_timestamp_us;
time_now_us += dt_us;
float dt_inv = 1.0e6 / ((float)dt_us);
if ( dt_inv > 100) {
adjust_frame_time(dt_inv);
}
prev_timestamp_us = pkt.timestamp_us;
// dcm_bl: dcm from body to local frame
dcm.from_euler(pkt.roll, pkt.pitch, pkt.yaw);
dcm.normalize();
// subtract gravity to get specific force measuremnt of the IMU
accel_body = Vector3f(pkt.xAccel, pkt.yAccel, pkt.zAccel) - dcm.transposed()*Vector3f(0.0f, 0.0f, GRAVITY_MSS);
gyro = Vector3f(pkt.rollRate, pkt.pitchRate, pkt.yawRate);
velocity_ef = Vector3f(pkt.speedN, pkt.speedE, pkt.speedD);
location.lat = pkt.latitude * 1.0e7;
location.lng = pkt.longitude * 1.0e7;
location.alt = pkt.altitude * 1.0e2;
position.z = (home.alt - location.alt) * 1.0e-2;
// velocity relative to air mass, in earth frame TODO
velocity_air_ef = velocity_ef - wind_ef;
// velocity relative to airmass in body frame TODO
velocity_air_bf = dcm.transposed() * velocity_air_ef;
battery_voltage = 0;
battery_current = 0;
rpm[0] = 0;
rpm[1] = 0;
airspeed = pkt.airspeed;
airspeed_pitot = pkt.airspeed;
}
/*
update the Scrimmage simulation by one time step
*/
void Scrimmage::update(const struct sitl_input &input)
{
send_servos(input);
recv_fdm(input);
update_mag_field_bf();
}
} // namespace SITL
#endif