Ardupilot2/libraries/AP_Compass/AP_Compass.h
2024-09-21 10:08:36 +10:00

682 lines
22 KiB
C++

#pragma once
#include "AP_Compass_config.h"
#include <inttypes.h>
#include <AP_Common/AP_Common.h>
#include <AP_Declination/AP_Declination.h>
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_Param/AP_Param.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <AP_MSP/msp.h>
#include <AP_ExternalAHRS/AP_ExternalAHRS.h>
#include "AP_Compass_Backend.h"
#include "Compass_PerMotor.h"
#include <AP_Common/TSIndex.h>
// motor compensation types (for use with motor_comp_enabled)
#define AP_COMPASS_MOT_COMP_DISABLED 0x00
#define AP_COMPASS_MOT_COMP_THROTTLE 0x01
#define AP_COMPASS_MOT_COMP_CURRENT 0x02
#define AP_COMPASS_MOT_COMP_PER_MOTOR 0x03
// setup default mag orientation for some board types
#ifndef MAG_BOARD_ORIENTATION
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX && CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
# define MAG_BOARD_ORIENTATION ROTATION_YAW_90
#elif CONFIG_HAL_BOARD == HAL_BOARD_LINUX && (CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2 || \
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_PXFMINI)
# define MAG_BOARD_ORIENTATION ROTATION_YAW_270
#else
# define MAG_BOARD_ORIENTATION ROTATION_NONE
#endif
#endif
#ifndef COMPASS_MOT_ENABLED
#define COMPASS_MOT_ENABLED 1
#endif
#ifndef COMPASS_LEARN_ENABLED
#define COMPASS_LEARN_ENABLED AP_COMPASS_CALIBRATION_FIXED_YAW_ENABLED
#endif
// define default compass calibration fitness and consistency checks
#define AP_COMPASS_CALIBRATION_FITNESS_DEFAULT 16.0f
#define AP_COMPASS_MAX_XYZ_ANG_DIFF radians(90.0f)
#define AP_COMPASS_MAX_XY_ANG_DIFF radians(60.0f)
#define AP_COMPASS_MAX_XY_LENGTH_DIFF 200.0f
/**
maximum number of compass instances available on this platform. If more
than 1 then redundant sensors may be available
*/
#ifndef HAL_BUILD_AP_PERIPH
#ifndef HAL_COMPASS_MAX_SENSORS
#define HAL_COMPASS_MAX_SENSORS 3
#endif
#if HAL_COMPASS_MAX_SENSORS > 1
#define COMPASS_MAX_UNREG_DEV 5
#else
#define COMPASS_MAX_UNREG_DEV 0
#endif
#else
#ifndef HAL_COMPASS_MAX_SENSORS
#define HAL_COMPASS_MAX_SENSORS 1
#endif
#define COMPASS_MAX_UNREG_DEV 0
#endif
#define COMPASS_MAX_INSTANCES HAL_COMPASS_MAX_SENSORS
#define COMPASS_MAX_BACKEND HAL_COMPASS_MAX_SENSORS
#define MAX_CONNECTED_MAGS (COMPASS_MAX_UNREG_DEV+COMPASS_MAX_INSTANCES)
#include "CompassCalibrator.h"
class CompassLearn;
class Compass
{
friend class AP_Compass_Backend;
public:
Compass();
/* Do not allow copies */
CLASS_NO_COPY(Compass);
// get singleton instance
static Compass *get_singleton() {
return _singleton;
}
friend class CompassLearn;
/// Initialize the compass device.
///
/// @returns True if the compass was initialized OK, false if it was not
/// found or is not functioning.
///
void init();
/// Read the compass and update the mag_ variables.
///
bool read();
// available returns true if the compass is both enabled and has
// been initialised
bool available() const { return _enabled && init_done; }
/// Calculate the tilt-compensated heading_ variables.
///
/// @param dcm_matrix The current orientation rotation matrix
///
/// @returns heading in radians
///
float calculate_heading(const Matrix3f &dcm_matrix) const {
return calculate_heading(dcm_matrix, _first_usable);
}
float calculate_heading(const Matrix3f &dcm_matrix, uint8_t i) const;
/// Sets offset x/y/z values.
///
/// @param i compass instance
/// @param offsets Offsets to the raw mag_ values in milligauss.
///
void set_offsets(uint8_t i, const Vector3f &offsets);
/// Sets and saves the compass offset x/y/z values.
///
/// @param i compass instance
/// @param offsets Offsets to the raw mag_ values in milligauss.
///
void set_and_save_offsets(uint8_t i, const Vector3f &offsets);
#if AP_COMPASS_DIAGONALS_ENABLED
void set_and_save_diagonals(uint8_t i, const Vector3f &diagonals);
void set_and_save_offdiagonals(uint8_t i, const Vector3f &diagonals);
#endif
void set_and_save_scale_factor(uint8_t i, float scale_factor);
void set_and_save_orientation(uint8_t i, Rotation orientation);
/// Saves the current offset x/y/z values for one or all compasses
///
/// @param i compass instance
///
/// This should be invoked periodically to save the offset values maintained by
/// ::learn_offsets.
///
void save_offsets(uint8_t i);
void save_offsets(void);
// return the number of compass instances
uint8_t get_count(void) const { return _compass_count; }
// return the number of enabled sensors
uint8_t get_num_enabled(void) const;
/// Return the current field as a Vector3f in milligauss
const Vector3f &get_field(uint8_t i) const { return _get_state(Priority(i)).field; }
const Vector3f &get_field(void) const { return get_field(_first_usable); }
/// Return true if we have set a scale factor for a compass
bool have_scale_factor(uint8_t i) const;
#if COMPASS_MOT_ENABLED
// per-motor calibration access
void per_motor_calibration_start(void) {
_per_motor.calibration_start();
}
void per_motor_calibration_update(void) {
_per_motor.calibration_update();
}
void per_motor_calibration_end(void) {
_per_motor.calibration_end();
}
#endif
#if COMPASS_CAL_ENABLED
// compass calibrator interface
void cal_update();
// start_calibration_all will only return false if there are no
// compasses to calibrate.
bool start_calibration_all(bool retry=false, bool autosave=false, float delay_sec=0.0f, bool autoreboot = false);
void cancel_calibration_all();
bool compass_cal_requires_reboot() const { return _cal_requires_reboot; }
bool is_calibrating() const;
#if HAL_MAVLINK_BINDINGS_ENABLED
/*
handle an incoming MAG_CAL command
*/
MAV_RESULT handle_mag_cal_command(const mavlink_command_int_t &packet);
bool send_mag_cal_progress(const class GCS_MAVLINK& link);
bool send_mag_cal_report(const class GCS_MAVLINK& link);
#endif // HAL_MAVLINK_BINDINGS_ENABLED
#endif // COMPASS_CAL_ENABLED
// indicate which bit in LOG_BITMASK indicates we should log compass readings
void set_log_bit(uint32_t log_bit) { _log_bit = log_bit; }
// check if the compasses are pointing in the same direction
bool consistent() const;
/// Return the health of a compass
bool healthy(uint8_t i) const;
bool healthy(void) const { return healthy(_first_usable); }
uint8_t get_healthy_mask() const;
/// Returns the current offset values
///
/// @returns The current compass offsets in milligauss.
///
const Vector3f &get_offsets(uint8_t i) const { return _get_state(Priority(i)).offset; }
const Vector3f &get_offsets(void) const { return get_offsets(_first_usable); }
#if AP_COMPASS_DIAGONALS_ENABLED
const Vector3f &get_diagonals(uint8_t i) const { return _get_state(Priority(i)).diagonals; }
const Vector3f &get_diagonals(void) const { return get_diagonals(_first_usable); }
const Vector3f &get_offdiagonals(uint8_t i) const { return _get_state(Priority(i)).offdiagonals; }
const Vector3f &get_offdiagonals(void) const { return get_offdiagonals(_first_usable); }
#endif // AP_COMPASS_DIAGONALS_ENABLED
// learn offsets accessor
bool learn_offsets_enabled() const { return _learn == LEARN_INFLIGHT; }
/// return true if the compass should be used for yaw calculations
bool use_for_yaw(uint8_t i) const;
bool use_for_yaw(void) const;
/// Sets the local magnetic field declination.
///
/// @param radians Local field declination.
/// @param save_to_eeprom true to save to eeprom (false saves only to memory)
///
void set_declination(float radians, bool save_to_eeprom = true);
float get_declination() const;
bool auto_declination_enabled() const { return _auto_declination != 0; }
// set overall board orientation
void set_board_orientation(enum Rotation orientation) {
_board_orientation = orientation;
}
// get overall board orientation
enum Rotation get_board_orientation(void) const {
return _board_orientation;
}
/// Set the motor compensation type
///
/// @param comp_type 0 = disabled, 1 = enabled use throttle, 2 = enabled use current
///
void motor_compensation_type(const uint8_t comp_type);
/// get the motor compensation value.
uint8_t get_motor_compensation_type() const {
return _motor_comp_type;
}
/// Set the motor compensation factor x/y/z values.
///
/// @param i instance of compass
/// @param offsets Offsets multiplied by the throttle value and added to the raw mag_ values.
///
void set_motor_compensation(uint8_t i, const Vector3f &motor_comp_factor);
/// get motor compensation factors as a vector
const Vector3f& get_motor_compensation(uint8_t i) const { return _get_state(Priority(i)).motor_compensation; }
const Vector3f& get_motor_compensation(void) const { return get_motor_compensation(_first_usable); }
/// Saves the current motor compensation x/y/z values.
///
/// This should be invoked periodically to save the offset values calculated by the motor compensation auto learning
///
void save_motor_compensation();
/// Returns the current motor compensation offset values
///
/// @returns The current compass offsets in milligauss.
///
const Vector3f &get_motor_offsets(uint8_t i) const { return _get_state(Priority(i)).motor_offset; }
const Vector3f &get_motor_offsets(void) const { return get_motor_offsets(_first_usable); }
/// Set the throttle as a percentage from 0.0 to 1.0
/// @param thr_pct throttle expressed as a percentage from 0 to 1.0
void set_throttle(float thr_pct) {
if (_motor_comp_type == AP_COMPASS_MOT_COMP_THROTTLE) {
_thr = thr_pct;
}
}
#if COMPASS_MOT_ENABLED
/// Set the battery voltage for per-motor compensation
void set_voltage(float voltage) {
_per_motor.set_voltage(voltage);
}
#endif
/// Returns True if the compasses have been configured (i.e. offsets saved)
///
/// @returns True if compass has been configured
///
bool configured(uint8_t i);
bool configured(char *failure_msg, uint8_t failure_msg_len);
// return last update time in microseconds
uint32_t last_update_usec(void) const { return last_update_usec(_first_usable); }
uint32_t last_update_usec(uint8_t i) const { return _get_state(Priority(i)).last_update_usec; }
uint32_t last_update_ms(void) const { return last_update_ms(_first_usable); }
uint32_t last_update_ms(uint8_t i) const { return _get_state(Priority(i)).last_update_ms; }
static const struct AP_Param::GroupInfo var_info[];
enum LearnType {
LEARN_NONE=0,
LEARN_INTERNAL=1,
LEARN_EKF=2,
LEARN_INFLIGHT=3
};
// return the chosen learning type
enum LearnType get_learn_type(void) const {
return (enum LearnType)_learn.get();
}
// set the learning type
void set_learn_type(enum LearnType type, bool save) {
if (save) {
_learn.set_and_save((int8_t)type);
} else {
_learn.set((int8_t)type);
}
}
// return maximum allowed compass offsets
uint16_t get_offsets_max(void) const {
return (uint16_t)_offset_max.get();
}
uint8_t get_filter_range() const { return uint8_t(_filter_range.get()); }
#if AP_COMPASS_CALIBRATION_FIXED_YAW_ENABLED
/*
fast compass calibration given vehicle position and yaw
*/
bool mag_cal_fixed_yaw(float yaw_deg, uint8_t compass_mask,
float lat_deg, float lon_deg,
bool force_use=false);
#endif
#if AP_COMPASS_MSP_ENABLED
void handle_msp(const MSP::msp_compass_data_message_t &pkt);
#endif
#if AP_COMPASS_EXTERNALAHRS_ENABLED
void handle_external(const AP_ExternalAHRS::mag_data_message_t &pkt);
#endif
// force save of current calibration as valid
void force_save_calibration(void);
// get the first compass marked for use by COMPASSx_USE
uint8_t get_first_usable(void) const { return _first_usable; }
private:
static Compass *_singleton;
// Use Priority and StateIndex typesafe index types
// to distinguish between two different type of indexing
// We use StateIndex for access by Backend
// and Priority for access by Frontend
DECLARE_TYPESAFE_INDEX(Priority, uint8_t);
DECLARE_TYPESAFE_INDEX(StateIndex, uint8_t);
/// Register a new compas driver, allocating an instance number
///
/// @param dev_id Dev ID of compass to register against
///
/// @return instance number saved against the dev id or first available empty instance number
bool register_compass(int32_t dev_id, uint8_t& instance);
// load backend drivers
bool _add_backend(AP_Compass_Backend *backend);
void _probe_external_i2c_compasses(void);
void _detect_backends(void);
void probe_i2c_spi_compasses(void);
#if AP_COMPASS_DRONECAN_ENABLED
void probe_dronecan_compasses(void);
#endif
#if COMPASS_CAL_ENABLED
// compass cal
void _update_calibration_trampoline();
bool _accept_calibration(uint8_t i);
bool _accept_calibration_mask(uint8_t mask);
void _cancel_calibration(uint8_t i);
void _cancel_calibration_mask(uint8_t mask);
uint8_t _get_cal_mask();
bool _start_calibration(uint8_t i, bool retry=false, float delay_sec=0.0f);
bool _start_calibration_mask(uint8_t mask, bool retry=false, bool autosave=false, float delay_sec=0.0f, bool autoreboot=false);
bool _auto_reboot() const { return _compass_cal_autoreboot; }
#if HAL_MAVLINK_BINDINGS_ENABLED
Priority next_cal_progress_idx[MAVLINK_COMM_NUM_BUFFERS];
Priority next_cal_report_idx[MAVLINK_COMM_NUM_BUFFERS];
#endif
#endif // COMPASS_CAL_ENABLED
// see if we already have probed a i2c driver by bus number and address
bool _have_i2c_driver(uint8_t bus_num, uint8_t address) const;
#if AP_COMPASS_CALIBRATION_FIXED_YAW_ENABLED
/*
get mag field with the effects of offsets, diagonals and
off-diagonals removed
*/
bool get_uncorrected_field(uint8_t instance, Vector3f &field) const;
#endif
#if COMPASS_CAL_ENABLED
//keep track of which calibrators have been saved
RestrictIDTypeArray<bool, COMPASS_MAX_INSTANCES, Priority> _cal_saved;
bool _cal_autosave;
//autoreboot after compass calibration
bool _compass_cal_autoreboot;
bool _cal_requires_reboot;
bool _cal_has_run;
#endif // COMPASS_CAL_ENABLED
// enum of drivers for COMPASS_DISBLMSK
enum DriverType {
#if AP_COMPASS_HMC5843_ENABLED
DRIVER_HMC5843 =0,
#endif
#if AP_COMPASS_LSM303D_ENABLED
DRIVER_LSM303D =1,
#endif
#if AP_COMPASS_AK8963_ENABLED
DRIVER_AK8963 =2,
#endif
#if AP_COMPASS_BMM150_ENABLED
DRIVER_BMM150 =3,
#endif
#if AP_COMPASS_LSM9DS1_ENABLED
DRIVER_LSM9DS1 =4,
#endif
#if AP_COMPASS_LIS3MDL_ENABLED
DRIVER_LIS3MDL =5,
#endif
#if AP_COMPASS_AK09916_ENABLED
DRIVER_AK09916 =6,
#endif
#if AP_COMPASS_IST8310_ENABLED
DRIVER_IST8310 =7,
#endif
#if AP_COMPASS_ICM20948_ENABLED
DRIVER_ICM20948 =8,
#endif
#if AP_COMPASS_MMC3416_ENABLED
DRIVER_MMC3416 =9,
#endif
#if AP_COMPASS_DRONECAN_ENABLED
DRIVER_UAVCAN =11,
#endif
#if AP_COMPASS_QMC5883L_ENABLED
DRIVER_QMC5883L =12,
#endif
#if AP_COMPASS_SITL_ENABLED
DRIVER_SITL =13,
#endif
#if AP_COMPASS_MAG3110_ENABLED
DRIVER_MAG3110 =14,
#endif
#if AP_COMPASS_IST8308_ENABLED
DRIVER_IST8308 =15,
#endif
#if AP_COMPASS_RM3100_ENABLED
DRIVER_RM3100 =16,
#endif
#if AP_COMPASS_MSP_ENABLED
DRIVER_MSP =17,
#endif
#if AP_COMPASS_EXTERNALAHRS_ENABLED
DRIVER_EXTERNALAHRS =18,
#endif
#if AP_COMPASS_MMC5XX3_ENABLED
DRIVER_MMC5XX3 =19,
#endif
#if AP_COMPASS_QMC5883P_ENABLED
DRIVER_QMC5883P =20,
#endif
#if AP_COMPASS_BMM350_ENABLED
DRIVER_BMM350 =21,
#endif
};
bool _driver_enabled(enum DriverType driver_type);
// backend objects
AP_Compass_Backend *_backends[COMPASS_MAX_BACKEND];
uint8_t _backend_count;
// whether to enable the compass drivers at all
AP_Int8 _enabled;
// number of registered compasses.
uint8_t _compass_count;
// number of unregistered compasses.
uint8_t _unreg_compass_count;
// settable parameters
AP_Int8 _learn;
// board orientation from AHRS
enum Rotation _board_orientation = ROTATION_NONE;
// declination in radians
AP_Float _declination;
// enable automatic declination code
AP_Int8 _auto_declination;
// stores which bit is used to indicate we should log compass readings
uint32_t _log_bit = -1;
// motor compensation type
// 0 = disabled, 1 = enabled for throttle, 2 = enabled for current
AP_Int8 _motor_comp_type;
// automatic compass orientation on calibration
AP_Int8 _rotate_auto;
// throttle expressed as a percentage from 0 ~ 1.0, used for motor compensation
float _thr;
struct mag_state {
AP_Int8 external;
bool healthy;
bool registered;
Compass::Priority priority;
AP_Int8 orientation;
AP_Vector3f offset;
#if AP_COMPASS_DIAGONALS_ENABLED
AP_Vector3f diagonals;
AP_Vector3f offdiagonals;
#endif
AP_Float scale_factor;
// device id detected at init.
// saved to eeprom when offsets are saved allowing ram &
// eeprom values to be compared as consistency check
AP_Int32 dev_id;
// Initialised when compass is detected
int32_t detected_dev_id;
// Initialised at boot from saved devid
int32_t expected_dev_id;
// factors multiplied by throttle and added to compass outputs
AP_Vector3f motor_compensation;
// latest compensation added to compass
Vector3f motor_offset;
// corrected magnetic field strength
Vector3f field;
// when we last got data
uint32_t last_update_ms;
uint32_t last_update_usec;
// board specific orientation
enum Rotation rotation;
// accumulated samples, protected by _sem, used by AP_Compass_Backend
Vector3f accum;
uint32_t accum_count;
// We only copy persistent params
void copy_from(const mag_state& state);
};
//Create an Array of mag_state to be accessible by StateIndex only
RestrictIDTypeArray<mag_state, COMPASS_MAX_INSTANCES+1, StateIndex> _state;
//Convert Priority to StateIndex
StateIndex _get_state_id(Priority priority) const;
//Get State Struct by Priority
const struct mag_state& _get_state(Priority priority) const { return _state[_get_state_id(priority)]; }
//Convert StateIndex to Priority
Priority _get_priority(StateIndex state_id) { return _state[state_id].priority; }
//Method to detect compass beyond initialisation stage
void _detect_runtime(void);
// This method reorganises devid list to match
// priority list, only call before detection at boot
#if COMPASS_MAX_INSTANCES > 1
void _reorder_compass_params();
#endif
// Update Priority List for Mags, by default, we just
// load them as they come up the first time
Priority _update_priority_list(int32_t dev_id);
// method to check if the mag with the devid
// is a replacement mag
bool is_replacement_mag(uint32_t dev_id);
//remove the devid from unreg compass list
void remove_unreg_dev_id(uint32_t devid);
void _reset_compass_id();
//Create Arrays to be accessible by Priority only
RestrictIDTypeArray<AP_Int8, COMPASS_MAX_INSTANCES, Priority> _use_for_yaw;
#if COMPASS_MAX_INSTANCES > 1
RestrictIDTypeArray<AP_Int32, COMPASS_MAX_INSTANCES, Priority> _priority_did_stored_list;
RestrictIDTypeArray<int32_t, COMPASS_MAX_INSTANCES, Priority> _priority_did_list;
#endif
AP_Int16 _offset_max;
// bitmask of options
enum class Option : uint16_t {
CAL_REQUIRE_GPS = (1U<<0),
ALLOW_DRONECAN_AUTO_REPLACEMENT = (1U<<1),
};
bool option_set(Option opt) const { return (_options.get() & uint16_t(opt)) != 0; }
AP_Int16 _options;
#if COMPASS_CAL_ENABLED
RestrictIDTypeArray<CompassCalibrator*, COMPASS_MAX_INSTANCES, Priority> _calibrator;
#endif
#if COMPASS_MOT_ENABLED
// per-motor compass compensation
Compass_PerMotor _per_motor{*this};
#endif
AP_Float _calibration_threshold;
// mask of driver types to not load. Bit positions match DEVTYPE_ in backend
AP_Int32 _driver_type_mask;
#if COMPASS_MAX_UNREG_DEV
// Put extra dev ids detected
AP_Int32 extra_dev_id[COMPASS_MAX_UNREG_DEV];
uint32_t _previously_unreg_mag[COMPASS_MAX_UNREG_DEV];
#endif
AP_Int8 _filter_range;
CompassLearn *learn;
bool learn_allocated;
/// Sets the initial location used to get declination
///
/// @param latitude GPS Latitude.
/// @param longitude GPS Longitude.
///
void try_set_initial_location();
bool _initial_location_set;
bool _cal_thread_started;
#if AP_COMPASS_MSP_ENABLED
uint8_t msp_instance_mask;
#endif
bool init_done;
bool suppress_devid_save;
uint8_t _first_usable; // first compass usable based on COMPASSx_USE param
};
namespace AP {
Compass &compass();
};