Ardupilot2/libraries/AC_PID/AC_PID.cpp
2021-04-15 06:57:16 +10:00

371 lines
10 KiB
C++

/// @file AC_PID.cpp
/// @brief Generic PID algorithm
#include <AP_Math/AP_Math.h>
#include "AC_PID.h"
const AP_Param::GroupInfo AC_PID::var_info[] = {
// @Param: P
// @DisplayName: PID Proportional Gain
// @Description: P Gain which produces an output value that is proportional to the current error value
AP_GROUPINFO("P", 0, AC_PID, _kp, 0),
// @Param: I
// @DisplayName: PID Integral Gain
// @Description: I Gain which produces an output that is proportional to both the magnitude and the duration of the error
AP_GROUPINFO("I", 1, AC_PID, _ki, 0),
// @Param: D
// @DisplayName: PID Derivative Gain
// @Description: D Gain which produces an output that is proportional to the rate of change of the error
AP_GROUPINFO("D", 2, AC_PID, _kd, 0),
// 3 was for uint16 IMAX
// @Param: FF
// @DisplayName: FF FeedForward Gain
// @Description: FF Gain which produces an output value that is proportional to the demanded input
AP_GROUPINFO("FF", 4, AC_PID, _kff, 0),
// @Param: IMAX
// @DisplayName: PID Integral Maximum
// @Description: The maximum/minimum value that the I term can output
AP_GROUPINFO("IMAX", 5, AC_PID, _kimax, 0),
// 6 was for float FILT
// 7 is for float ILMI and FF
// index 8 was for AFF
// @Param: FLTT
// @DisplayName: PID Target filter frequency in Hz
// @Description: Target filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTT", 9, AC_PID, _filt_T_hz, AC_PID_TFILT_HZ_DEFAULT),
// @Param: FLTE
// @DisplayName: PID Error filter frequency in Hz
// @Description: Error filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTE", 10, AC_PID, _filt_E_hz, AC_PID_EFILT_HZ_DEFAULT),
// @Param: FLTD
// @DisplayName: PID Derivative term filter frequency in Hz
// @Description: Derivative filter frequency in Hz
// @Units: Hz
AP_GROUPINFO("FLTD", 11, AC_PID, _filt_D_hz, AC_PID_DFILT_HZ_DEFAULT),
// @Param: SMAX
// @DisplayName: Slew rate limit
// @Description: Sets an upper limit on the slew rate produced by the combined P and D gains. If the amplitude of the control action produced by the rate feedback exceeds this value, then the D+P gain is reduced to respect the limit. This limits the amplitude of high frequency oscillations caused by an excessive gain. The limit should be set to no more than 25% of the actuators maximum slew rate to allow for load effects. Note: The gain will not be reduced to less than 10% of the nominal value. A value of zero will disable this feature.
// @Range: 0 200
// @Increment: 0.5
// @User: Advanced
AP_GROUPINFO("SMAX", 12, AC_PID, _slew_rate_max, 0),
AP_GROUPEND
};
// Constructor
AC_PID::AC_PID(float initial_p, float initial_i, float initial_d, float initial_ff, float initial_imax, float initial_filt_T_hz, float initial_filt_E_hz, float initial_filt_D_hz,
float dt, float initial_srmax, float initial_srtau):
_dt(dt),
_integrator(0.0f),
_error(0.0f),
_derivative(0.0f)
{
// load parameter values from eeprom
AP_Param::setup_object_defaults(this, var_info);
_kp = initial_p;
_ki = initial_i;
_kd = initial_d;
_kff = initial_ff;
_kimax = fabsf(initial_imax);
filt_T_hz(initial_filt_T_hz);
filt_E_hz(initial_filt_E_hz);
filt_D_hz(initial_filt_D_hz);
_slew_rate_max.set(initial_srmax);
_slew_rate_tau.set(initial_srtau);
// reset input filter to first value received
_flags._reset_filter = true;
memset(&_pid_info, 0, sizeof(_pid_info));
// slew limit scaler allows for plane to use degrees/sec slew
// limit
_slew_limit_scale = 1;
}
// set_dt - set time step in seconds
void AC_PID::set_dt(float dt)
{
// set dt and calculate the input filter alpha
_dt = dt;
}
// filt_T_hz - set target filter hz
void AC_PID::filt_T_hz(float hz)
{
_filt_T_hz.set(fabsf(hz));
}
// filt_E_hz - set error filter hz
void AC_PID::filt_E_hz(float hz)
{
_filt_E_hz.set(fabsf(hz));
}
// filt_D_hz - set derivative filter hz
void AC_PID::filt_D_hz(float hz)
{
_filt_D_hz.set(fabsf(hz));
}
// update_all - set target and measured inputs to PID controller and calculate outputs
// target and error are filtered
// the derivative is then calculated and filtered
// the integral is then updated based on the setting of the limit flag
float AC_PID::update_all(float target, float measurement, bool limit)
{
// don't process inf or NaN
if (!isfinite(target) || !isfinite(measurement)) {
return 0.0f;
}
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_target = target;
_error = _target - measurement;
_derivative = 0.0f;
} else {
float error_last = _error;
_target += get_filt_T_alpha() * (target - _target);
_error += get_filt_E_alpha() * ((_target - measurement) - _error);
// calculate and filter derivative
if (_dt > 0.0f) {
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
}
}
// update I term
update_i(limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
// calculate slew limit modifier for P+D
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
P_out *= _pid_info.Dmod;
D_out *= _pid_info.Dmod;
_pid_info.target = _target;
_pid_info.actual = measurement;
_pid_info.error = _error;
_pid_info.P = P_out;
_pid_info.D = D_out;
return P_out + _integrator + D_out;
}
// update_error - set error input to PID controller and calculate outputs
// target is set to zero and error is set and filtered
// the derivative then is calculated and filtered
// the integral is then updated based on the setting of the limit flag
// Target and Measured must be set manually for logging purposes.
// todo: remove function when it is no longer used.
float AC_PID::update_error(float error, bool limit)
{
// don't process inf or NaN
if (!isfinite(error)) {
return 0.0f;
}
_target = 0.0f;
// reset input filter to value received
if (_flags._reset_filter) {
_flags._reset_filter = false;
_error = error;
_derivative = 0.0f;
} else {
float error_last = _error;
_error += get_filt_E_alpha() * (error - _error);
// calculate and filter derivative
if (_dt > 0.0f) {
float derivative = (_error - error_last) / _dt;
_derivative += get_filt_D_alpha() * (derivative - _derivative);
}
}
// update I term
update_i(limit);
float P_out = (_error * _kp);
float D_out = (_derivative * _kd);
// calculate slew limit modifier for P+D
_pid_info.Dmod = _slew_limiter.modifier((_pid_info.P + _pid_info.D) * _slew_limit_scale, _dt);
_pid_info.slew_rate = _slew_limiter.get_slew_rate();
P_out *= _pid_info.Dmod;
D_out *= _pid_info.Dmod;
_pid_info.target = 0.0f;
_pid_info.actual = 0.0f;
_pid_info.error = _error;
_pid_info.P = P_out;
_pid_info.D = D_out;
return P_out + _integrator + D_out;
}
// update_i - update the integral
// If the limit flag is set the integral is only allowed to shrink
void AC_PID::update_i(bool limit)
{
if (!is_zero(_ki) && is_positive(_dt)) {
// Ensure that integrator can only be reduced if the output is saturated
if (!limit || ((is_positive(_integrator) && is_negative(_error)) || (is_negative(_integrator) && is_positive(_error)))) {
_integrator += ((float)_error * _ki) * _dt;
_integrator = constrain_float(_integrator, -_kimax, _kimax);
}
} else {
_integrator = 0.0f;
}
_pid_info.I = _integrator;
_pid_info.limit = limit;
}
float AC_PID::get_p() const
{
return _error * _kp;
}
float AC_PID::get_i() const
{
return _integrator;
}
float AC_PID::get_d() const
{
return _kd * _derivative;
}
float AC_PID::get_ff()
{
_pid_info.FF = _target * _kff;
return _target * _kff;
}
void AC_PID::reset_I()
{
_integrator = 0;
}
void AC_PID::reset_I_smoothly()
{
float reset_time = AC_PID_RESET_TC * 3.0f;
uint64_t now = AP_HAL::micros64();
if ((now - _reset_last_update) > 5e5 ) {
_reset_counter = 0;
}
if ((float)_reset_counter < (reset_time/_dt)) {
_integrator = _integrator - (_dt / (_dt + AC_PID_RESET_TC)) * _integrator;
_reset_counter++;
} else {
_integrator = 0;
}
_reset_last_update = now;
}
void AC_PID::load_gains()
{
_kp.load();
_ki.load();
_kd.load();
_kff.load();
_kimax.load();
_kimax = fabsf(_kimax);
_filt_T_hz.load();
_filt_E_hz.load();
_filt_D_hz.load();
}
// save_gains - save gains to eeprom
void AC_PID::save_gains()
{
_kp.save();
_ki.save();
_kd.save();
_kff.save();
_kimax.save();
_filt_T_hz.save();
_filt_E_hz.save();
_filt_D_hz.save();
}
/// Overload the function call operator to permit easy initialisation
void AC_PID::operator()(float p_val, float i_val, float d_val, float ff_val, float imax_val, float input_filt_T_hz, float input_filt_E_hz, float input_filt_D_hz, float dt)
{
_kp = p_val;
_ki = i_val;
_kd = d_val;
_kff = ff_val;
_kimax = fabsf(imax_val);
_filt_T_hz = input_filt_T_hz;
_filt_E_hz = input_filt_E_hz;
_filt_D_hz = input_filt_D_hz;
_dt = dt;
}
// get_filt_T_alpha - get the target filter alpha
float AC_PID::get_filt_T_alpha() const
{
return get_filt_alpha(_filt_T_hz);
}
// get_filt_E_alpha - get the error filter alpha
float AC_PID::get_filt_E_alpha() const
{
return get_filt_alpha(_filt_E_hz);
}
// get_filt_D_alpha - get the derivative filter alpha
float AC_PID::get_filt_D_alpha() const
{
return get_filt_alpha(_filt_D_hz);
}
// get_filt_alpha - calculate a filter alpha
float AC_PID::get_filt_alpha(float filt_hz) const
{
return calc_lowpass_alpha_dt(_dt, filt_hz);
}
void AC_PID::set_integrator(float target, float measurement, float i)
{
set_integrator(target - measurement, i);
}
void AC_PID::set_integrator(float error, float i)
{
_integrator = constrain_float(i - error * _kp, -_kimax, _kimax);
_pid_info.I = _integrator;
}
void AC_PID::set_integrator(float i)
{
_integrator = constrain_float(i, -_kimax, _kimax);
_pid_info.I = _integrator;
}