Ardupilot2/ArduCopter/mode_guided.cpp
murata 8644f4d76e Copter: Disable option code
Copter: Revert change

Copter: Change mistakes
2019-02-26 10:00:00 +09:00

792 lines
28 KiB
C++

#include "Copter.h"
#if MODE_GUIDED_ENABLED == ENABLED
/*
* Init and run calls for guided flight mode
*/
#ifndef GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM
# define GUIDED_LOOK_AT_TARGET_MIN_DISTANCE_CM 500 // point nose at target if it is more than 5m away
#endif
#define GUIDED_POSVEL_TIMEOUT_MS 3000 // guided mode's position-velocity controller times out after 3seconds with no new updates
#define GUIDED_ATTITUDE_TIMEOUT_MS 1000 // guided mode's attitude controller times out after 1 second with no new updates
static Vector3f guided_pos_target_cm; // position target (used by posvel controller only)
static Vector3f guided_vel_target_cms; // velocity target (used by velocity controller and posvel controller)
static uint32_t posvel_update_time_ms; // system time of last target update to posvel controller (i.e. position and velocity update)
static uint32_t vel_update_time_ms; // system time of last target update to velocity controller
struct {
uint32_t update_time_ms;
float roll_cd;
float pitch_cd;
float yaw_cd;
float yaw_rate_cds;
float climb_rate_cms;
bool use_yaw_rate;
} static guided_angle_state;
struct Guided_Limit {
uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked
float alt_min_cm; // lower altitude limit in cm above home (0 = no limit)
float alt_max_cm; // upper altitude limit in cm above home (0 = no limit)
float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit)
uint32_t start_time;// system time in milliseconds that control was handed to the external computer
Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit
} guided_limit;
// guided_init - initialise guided controller
bool Copter::ModeGuided::init(bool ignore_checks)
{
if (copter.position_ok() || ignore_checks) {
// start in position control mode
pos_control_start();
return true;
}else{
return false;
}
}
// do_user_takeoff_start - initialises waypoint controller to implement take-off
bool Copter::ModeGuided::do_user_takeoff_start(float final_alt_above_home)
{
guided_mode = Guided_TakeOff;
// initialise wpnav destination
Location target_loc = copter.current_loc;
target_loc.set_alt_cm(final_alt_above_home, Location::ALT_FRAME_ABOVE_HOME);
if (!wp_nav->set_wp_destination(target_loc)) {
// failure to set destination can only be because of missing terrain data
copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
// initialise yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
// clear i term when we're taking off
set_throttle_takeoff();
// get initial alt for WP_NAVALT_MIN
auto_takeoff_set_start_alt();
return true;
}
// initialise guided mode's position controller
void Copter::ModeGuided::pos_control_start()
{
// set to position control mode
guided_mode = Guided_WP;
// initialise waypoint and spline controller
wp_nav->wp_and_spline_init();
// initialise wpnav to stopping point
Vector3f stopping_point;
wp_nav->get_wp_stopping_point(stopping_point);
// no need to check return status because terrain data is not used
wp_nav->set_wp_destination(stopping_point, false);
// initialise yaw
auto_yaw.set_mode_to_default(false);
}
// initialise guided mode's velocity controller
void Copter::ModeGuided::vel_control_start()
{
// set guided_mode to velocity controller
guided_mode = Guided_Velocity;
// initialise horizontal speed, acceleration
pos_control->set_max_speed_xy(wp_nav->get_default_speed_xy());
pos_control->set_max_accel_xy(wp_nav->get_wp_acceleration());
// initialize vertical speeds and acceleration
pos_control->set_max_speed_z(-get_pilot_speed_dn(), g.pilot_speed_up);
pos_control->set_max_accel_z(g.pilot_accel_z);
// initialise velocity controller
pos_control->init_vel_controller_xyz();
}
// initialise guided mode's posvel controller
void Copter::ModeGuided::posvel_control_start()
{
// set guided_mode to velocity controller
guided_mode = Guided_PosVel;
pos_control->init_xy_controller();
// set speed and acceleration from wpnav's speed and acceleration
pos_control->set_max_speed_xy(wp_nav->get_default_speed_xy());
pos_control->set_max_accel_xy(wp_nav->get_wp_acceleration());
const Vector3f& curr_pos = inertial_nav.get_position();
const Vector3f& curr_vel = inertial_nav.get_velocity();
// set target position and velocity to current position and velocity
pos_control->set_xy_target(curr_pos.x, curr_pos.y);
pos_control->set_desired_velocity_xy(curr_vel.x, curr_vel.y);
// set vertical speed and acceleration
pos_control->set_max_speed_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up());
pos_control->set_max_accel_z(wp_nav->get_accel_z());
// pilot always controls yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
// initialise guided mode's angle controller
void Copter::ModeGuided::angle_control_start()
{
// set guided_mode to velocity controller
guided_mode = Guided_Angle;
// set vertical speed and acceleration
pos_control->set_max_speed_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up());
pos_control->set_max_accel_z(wp_nav->get_accel_z());
// initialise position and desired velocity
if (!pos_control->is_active_z()) {
pos_control->set_alt_target_to_current_alt();
pos_control->set_desired_velocity_z(inertial_nav.get_velocity_z());
}
// initialise targets
guided_angle_state.update_time_ms = millis();
guided_angle_state.roll_cd = ahrs.roll_sensor;
guided_angle_state.pitch_cd = ahrs.pitch_sensor;
guided_angle_state.yaw_cd = ahrs.yaw_sensor;
guided_angle_state.climb_rate_cms = 0.0f;
guided_angle_state.yaw_rate_cds = 0.0f;
guided_angle_state.use_yaw_rate = false;
// pilot always controls yaw
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
// guided_set_destination - sets guided mode's target destination
// Returns true if the fence is enabled and guided waypoint is within the fence
// else return false if the waypoint is outside the fence
bool Copter::ModeGuided::set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
// ensure we are in position control mode
if (guided_mode != Guided_WP) {
pos_control_start();
}
#if AC_FENCE == ENABLED
// reject destination if outside the fence
const Location dest_loc(destination);
if (!copter.fence.check_destination_within_fence(dest_loc)) {
copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// no need to check return status because terrain data is not used
wp_nav->set_wp_destination(destination, false);
// log target
copter.Log_Write_GuidedTarget(guided_mode, destination, Vector3f());
return true;
}
bool Copter::ModeGuided::get_wp(Location& destination)
{
if (guided_mode != Guided_WP) {
return false;
}
return wp_nav->get_wp_destination(destination);
}
// sets guided mode's target from a Location object
// returns false if destination could not be set (probably caused by missing terrain data)
// or if the fence is enabled and guided waypoint is outside the fence
bool Copter::ModeGuided::set_destination(const Location& dest_loc, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
// ensure we are in position control mode
if (guided_mode != Guided_WP) {
pos_control_start();
}
#if AC_FENCE == ENABLED
// reject destination outside the fence.
// Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails
if (!copter.fence.check_destination_within_fence(dest_loc)) {
copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
if (!wp_nav->set_wp_destination(dest_loc)) {
// failure to set destination can only be because of missing terrain data
copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_FAILED_TO_SET_DESTINATION);
// failure is propagated to GCS with NAK
return false;
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// log target
copter.Log_Write_GuidedTarget(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt),Vector3f());
return true;
}
// guided_set_velocity - sets guided mode's target velocity
void Copter::ModeGuided::set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request)
{
// check we are in velocity control mode
if (guided_mode != Guided_Velocity) {
vel_control_start();
}
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
// record velocity target
guided_vel_target_cms = velocity;
vel_update_time_ms = millis();
// log target
if (log_request) {
copter.Log_Write_GuidedTarget(guided_mode, Vector3f(), velocity);
}
}
// set guided mode posvel target
bool Copter::ModeGuided::set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw)
{
// check we are in velocity control mode
if (guided_mode != Guided_PosVel) {
posvel_control_start();
}
#if AC_FENCE == ENABLED
// reject destination if outside the fence
const Location dest_loc(destination);
if (!copter.fence.check_destination_within_fence(dest_loc)) {
copter.Log_Write_Error(ERROR_SUBSYSTEM_NAVIGATION, ERROR_CODE_DEST_OUTSIDE_FENCE);
// failure is propagated to GCS with NAK
return false;
}
#endif
// set yaw state
set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw);
posvel_update_time_ms = millis();
guided_pos_target_cm = destination;
guided_vel_target_cms = velocity;
copter.pos_control->set_pos_target(guided_pos_target_cm);
// log target
copter.Log_Write_GuidedTarget(guided_mode, destination, velocity);
return true;
}
// set guided mode angle target
void Copter::ModeGuided::set_angle(const Quaternion &q, float climb_rate_cms, bool use_yaw_rate, float yaw_rate_rads)
{
// check we are in velocity control mode
if (guided_mode != Guided_Angle) {
angle_control_start();
}
// convert quaternion to euler angles
q.to_euler(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd);
guided_angle_state.roll_cd = ToDeg(guided_angle_state.roll_cd) * 100.0f;
guided_angle_state.pitch_cd = ToDeg(guided_angle_state.pitch_cd) * 100.0f;
guided_angle_state.yaw_cd = wrap_180_cd(ToDeg(guided_angle_state.yaw_cd) * 100.0f);
guided_angle_state.yaw_rate_cds = ToDeg(yaw_rate_rads) * 100.0f;
guided_angle_state.use_yaw_rate = use_yaw_rate;
guided_angle_state.climb_rate_cms = climb_rate_cms;
guided_angle_state.update_time_ms = millis();
// interpret positive climb rate as triggering take-off
if (motors->armed() && !ap.auto_armed && (guided_angle_state.climb_rate_cms > 0.0f)) {
copter.set_auto_armed(true);
}
// log target
copter.Log_Write_GuidedTarget(guided_mode,
Vector3f(guided_angle_state.roll_cd, guided_angle_state.pitch_cd, guided_angle_state.yaw_cd),
Vector3f(0.0f, 0.0f, guided_angle_state.climb_rate_cms));
}
// guided_run - runs the guided controller
// should be called at 100hz or more
void Copter::ModeGuided::run()
{
// call the correct auto controller
switch (guided_mode) {
case Guided_TakeOff:
// run takeoff controller
takeoff_run();
break;
case Guided_WP:
// run position controller
pos_control_run();
break;
case Guided_Velocity:
// run velocity controller
vel_control_run();
break;
case Guided_PosVel:
// run position-velocity controller
posvel_control_run();
break;
case Guided_Angle:
// run angle controller
angle_control_run();
break;
}
}
// guided_takeoff_run - takeoff in guided mode
// called by guided_run at 100hz or more
void Copter::ModeGuided::takeoff_run()
{
auto_takeoff_run();
if (wp_nav->reached_wp_destination()) {
const Vector3f target = wp_nav->get_wp_destination();
set_destination(target);
}
}
void Copter::Mode::auto_takeoff_run()
{
// if not auto armed or motor interlock not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock()) {
// initialise wpnav targets
wp_nav->shift_wp_origin_to_current_pos();
zero_throttle_and_relax_ac();
// clear i term when we're taking off
set_throttle_takeoff();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
}
#if FRAME_CONFIG == HELI_FRAME
// helicopters stay in landed state until rotor speed runup has finished
if (motors->rotor_runup_complete()) {
set_land_complete(false);
} else {
// initialise wpnav targets
wp_nav->shift_wp_origin_to_current_pos();
}
#else
set_land_complete(false);
#endif
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
copter.pos_control->update_z_controller();
// call attitude controller
auto_takeoff_attitude_run(target_yaw_rate);
}
// guided_pos_control_run - runs the guided position controller
// called from guided_run
void Copter::ModeGuided::pos_control_run()
{
// if not auto armed or motors not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock() || ap.land_complete) {
zero_throttle_and_relax_ac();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// run waypoint controller
copter.failsafe_terrain_set_status(wp_nav->update_wpnav());
// call z-axis position controller (wpnav should have already updated it's alt target)
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from waypoint controller, yaw rate from mavlink command or mission item
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), auto_yaw.rate_cds());
} else {
// roll, pitch from waypoint controller, yaw heading from GCS or auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(wp_nav->get_roll(), wp_nav->get_pitch(), auto_yaw.yaw(), true);
}
}
// guided_vel_control_run - runs the guided velocity controller
// called from guided_run
void Copter::ModeGuided::vel_control_run()
{
// if not auto armed or motors not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock() || ap.land_complete) {
// initialise velocity controller
pos_control->init_vel_controller_xyz();
zero_throttle_and_relax_ac();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - vel_update_time_ms > GUIDED_POSVEL_TIMEOUT_MS) {
if (!pos_control->get_desired_velocity().is_zero()) {
set_desired_velocity_with_accel_and_fence_limits(Vector3f(0.0f, 0.0f, 0.0f));
}
if (auto_yaw.mode() == AUTO_YAW_RATE) {
auto_yaw.set_rate(0.0f);
}
} else {
set_desired_velocity_with_accel_and_fence_limits(guided_vel_target_cms);
}
// call velocity controller which includes z axis controller
pos_control->update_vel_controller_xyz();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from velocity controller, yaw rate from mavlink command or mission item
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.rate_cds());
} else {
// roll, pitch from waypoint controller, yaw heading from GCS or auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.yaw(), true);
}
}
// guided_posvel_control_run - runs the guided spline controller
// called from guided_run
void Copter::ModeGuided::posvel_control_run()
{
// if not auto armed or motors not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock() || ap.land_complete) {
// set target position and velocity to current position and velocity
pos_control->set_pos_target(inertial_nav.get_position());
pos_control->set_desired_velocity(Vector3f(0,0,0));
zero_throttle_and_relax_ac();
return;
}
// process pilot's yaw input
float target_yaw_rate = 0;
if (!copter.failsafe.radio) {
// get pilot's desired yaw rate
target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->get_control_in());
if (!is_zero(target_yaw_rate)) {
auto_yaw.set_mode(AUTO_YAW_HOLD);
}
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// set velocity to zero and stop rotating if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - posvel_update_time_ms > GUIDED_POSVEL_TIMEOUT_MS) {
guided_vel_target_cms.zero();
if (auto_yaw.mode() == AUTO_YAW_RATE) {
auto_yaw.set_rate(0.0f);
}
}
// calculate dt
float dt = pos_control->time_since_last_xy_update();
// sanity check dt
if (dt >= 0.2f) {
dt = 0.0f;
}
// advance position target using velocity target
guided_pos_target_cm += guided_vel_target_cms * dt;
// send position and velocity targets to position controller
pos_control->set_pos_target(guided_pos_target_cm);
pos_control->set_desired_velocity_xy(guided_vel_target_cms.x, guided_vel_target_cms.y);
// run position controllers
pos_control->update_xy_controller();
pos_control->update_z_controller();
// call attitude controller
if (auto_yaw.mode() == AUTO_YAW_HOLD) {
// roll & pitch from waypoint controller, yaw rate from pilot
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), target_yaw_rate);
} else if (auto_yaw.mode() == AUTO_YAW_RATE) {
// roll & pitch from position-velocity controller, yaw rate from mavlink command or mission item
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.rate_cds());
} else {
// roll, pitch from waypoint controller, yaw heading from GCS or auto_heading()
attitude_control->input_euler_angle_roll_pitch_yaw(pos_control->get_roll(), pos_control->get_pitch(), auto_yaw.yaw(), true);
}
}
// guided_angle_control_run - runs the guided angle controller
// called from guided_run
void Copter::ModeGuided::angle_control_run()
{
// if not auto armed or motors not enabled set throttle to zero and exit immediately
if (!motors->armed() || !ap.auto_armed || !motors->get_interlock() || (ap.land_complete && guided_angle_state.climb_rate_cms <= 0.0f)) {
#if FRAME_CONFIG == HELI_FRAME
attitude_control->set_yaw_target_to_current_heading();
#endif
zero_throttle_and_relax_ac();
pos_control->relax_alt_hold_controllers(0.0f);
return;
}
// constrain desired lean angles
float roll_in = guided_angle_state.roll_cd;
float pitch_in = guided_angle_state.pitch_cd;
float total_in = norm(roll_in, pitch_in);
float angle_max = MIN(attitude_control->get_althold_lean_angle_max(), copter.aparm.angle_max);
if (total_in > angle_max) {
float ratio = angle_max / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// wrap yaw request
float yaw_in = wrap_180_cd(guided_angle_state.yaw_cd);
float yaw_rate_in = wrap_180_cd(guided_angle_state.yaw_rate_cds);
// constrain climb rate
float climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -fabsf(wp_nav->get_default_speed_down()), wp_nav->get_default_speed_up());
// get avoidance adjusted climb rate
climb_rate_cms = get_avoidance_adjusted_climbrate(climb_rate_cms);
// check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds
uint32_t tnow = millis();
if (tnow - guided_angle_state.update_time_ms > GUIDED_ATTITUDE_TIMEOUT_MS) {
roll_in = 0.0f;
pitch_in = 0.0f;
climb_rate_cms = 0.0f;
yaw_rate_in = 0.0f;
}
// set motors to full range
motors->set_desired_spool_state(AP_Motors::DESIRED_THROTTLE_UNLIMITED);
// call attitude controller
if (guided_angle_state.use_yaw_rate) {
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(roll_in, pitch_in, yaw_rate_in);
} else {
attitude_control->input_euler_angle_roll_pitch_yaw(roll_in, pitch_in, yaw_in, true);
}
// call position controller
pos_control->set_alt_target_from_climb_rate_ff(climb_rate_cms, G_Dt, false);
pos_control->update_z_controller();
}
// helper function to update position controller's desired velocity while respecting acceleration limits
void Copter::ModeGuided::set_desired_velocity_with_accel_and_fence_limits(const Vector3f& vel_des)
{
// get current desired velocity
Vector3f curr_vel_des = pos_control->get_desired_velocity();
// get change in desired velocity
Vector3f vel_delta = vel_des - curr_vel_des;
// limit xy change
float vel_delta_xy = safe_sqrt(sq(vel_delta.x)+sq(vel_delta.y));
float vel_delta_xy_max = G_Dt * pos_control->get_max_accel_xy();
float ratio_xy = 1.0f;
if (!is_zero(vel_delta_xy) && (vel_delta_xy > vel_delta_xy_max)) {
ratio_xy = vel_delta_xy_max / vel_delta_xy;
}
curr_vel_des.x += (vel_delta.x * ratio_xy);
curr_vel_des.y += (vel_delta.y * ratio_xy);
// limit z change
float vel_delta_z_max = G_Dt * pos_control->get_max_accel_z();
curr_vel_des.z += constrain_float(vel_delta.z, -vel_delta_z_max, vel_delta_z_max);
#if AC_AVOID_ENABLED
// limit the velocity to prevent fence violations
copter.avoid.adjust_velocity(pos_control->get_pos_xy_p().kP(), pos_control->get_max_accel_xy(), curr_vel_des, G_Dt);
// get avoidance adjusted climb rate
curr_vel_des.z = get_avoidance_adjusted_climbrate(curr_vel_des.z);
#endif
// update position controller with new target
pos_control->set_desired_velocity(curr_vel_des);
}
// helper function to set yaw state and targets
void Copter::ModeGuided::set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle)
{
if (use_yaw) {
auto_yaw.set_fixed_yaw(yaw_cd / 100.0f, 0.0f, 0, relative_angle);
} else if (use_yaw_rate) {
auto_yaw.set_rate(yaw_rate_cds);
}
}
// Guided Limit code
// guided_limit_clear - clear/turn off guided limits
void Copter::ModeGuided::limit_clear()
{
guided_limit.timeout_ms = 0;
guided_limit.alt_min_cm = 0.0f;
guided_limit.alt_max_cm = 0.0f;
guided_limit.horiz_max_cm = 0.0f;
}
// guided_limit_set - set guided timeout and movement limits
void Copter::ModeGuided::limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm)
{
guided_limit.timeout_ms = timeout_ms;
guided_limit.alt_min_cm = alt_min_cm;
guided_limit.alt_max_cm = alt_max_cm;
guided_limit.horiz_max_cm = horiz_max_cm;
}
// guided_limit_init_time_and_pos - initialise guided start time and position as reference for limit checking
// only called from AUTO mode's auto_nav_guided_start function
void Copter::ModeGuided::limit_init_time_and_pos()
{
// initialise start time
guided_limit.start_time = AP_HAL::millis();
// initialise start position from current position
guided_limit.start_pos = inertial_nav.get_position();
}
// guided_limit_check - returns true if guided mode has breached a limit
// used when guided is invoked from the NAV_GUIDED_ENABLE mission command
bool Copter::ModeGuided::limit_check()
{
// check if we have passed the timeout
if ((guided_limit.timeout_ms > 0) && (millis() - guided_limit.start_time >= guided_limit.timeout_ms)) {
return true;
}
// get current location
const Vector3f& curr_pos = inertial_nav.get_position();
// check if we have gone below min alt
if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) {
return true;
}
// check if we have gone above max alt
if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) {
return true;
}
// check if we have gone beyond horizontal limit
if (guided_limit.horiz_max_cm > 0.0f) {
float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos, curr_pos);
if (horiz_move > guided_limit.horiz_max_cm) {
return true;
}
}
// if we got this far we must be within limits
return false;
}
uint32_t Copter::ModeGuided::wp_distance() const
{
switch(mode()) {
case Guided_WP:
return wp_nav->get_wp_distance_to_destination();
break;
case Guided_PosVel:
return pos_control->get_distance_to_target();
break;
default:
return 0;
}
}
int32_t Copter::ModeGuided::wp_bearing() const
{
switch(mode()) {
case Guided_WP:
return wp_nav->get_wp_bearing_to_destination();
break;
case Guided_PosVel:
return pos_control->get_bearing_to_target();
break;
default:
return 0;
}
}
float Copter::ModeGuided::crosstrack_error() const
{
if (mode() == Guided_WP) {
return wp_nav->crosstrack_error();
} else {
return 0;
}
}
#endif