Ardupilot2/libraries/AP_Scripting/applets/Aerobatics/FixedWing/plane_aerobatics.lua
Andrew Tridgell 486787937a AP_Scripting: added roll_sequence to simplify complex manuevers
allows for complex roll sequences within manuevers
2022-11-20 18:23:05 +11:00

2658 lines
96 KiB
Lua

--[[
trajectory tracking aerobatic control
See README.md for usage
Written by Matthew Hampsey, Andy Palmer and Andrew Tridgell, with controller
assistance from Paul Riseborough, testing by Henry Wurzburg
]]--
-- setup param block for aerobatics, reserving 30 params beginning with AERO_
local PARAM_TABLE_KEY = 70
local PARAM_TABLE_PREFIX = 'AEROM_'
assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table')
-- add a parameter and bind it to a variable
function bind_add_param(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name))
return Parameter(PARAM_TABLE_PREFIX .. name)
end
AEROM_ANG_ACCEL = bind_add_param('ANG_ACCEL', 1, 6000)
AEROM_ANG_TC = bind_add_param('ANG_TC', 2, 0.1)
AEROM_KE_ANG = bind_add_param('KE_ANG', 3, 0)
THR_PIT_FF = bind_add_param('THR_PIT_FF', 4, 80)
SPD_P = bind_add_param('SPD_P', 5, 5)
SPD_I = bind_add_param('SPD_I', 6, 25)
ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3)
ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 0.25)
-- removed 9 and 10
TIME_CORR_P = bind_add_param('TIME_COR_P', 11, 1.0)
ERR_CORR_P = bind_add_param('ERR_COR_P', 12, 2.0)
ERR_CORR_D = bind_add_param('ERR_COR_D', 13, 2.8)
AEROM_ENTRY_RATE = bind_add_param('ENTRY_RATE', 14, 60)
AEROM_THR_LKAHD = bind_add_param('THR_LKAHD', 15, 1)
AEROM_DEBUG = bind_add_param('DEBUG', 16, 0)
AEROM_THR_MIN = bind_add_param('THR_MIN', 17, 0)
AEROM_THR_BOOST = bind_add_param('THR_BOOST', 18, 50)
AEROM_YAW_ACCEL = bind_add_param('YAW_ACCEL', 19, 1500)
AEROM_LKAHD = bind_add_param('LKAHD', 20, 0.5)
AEROM_PATH_SCALE = bind_add_param('PATH_SCALE', 21, 1.0)
-- cope with old param values
if AEROM_ANG_ACCEL:get() < 100 and AEROM_ANG_ACCEL:get() > 0 then
AEROM_ANG_ACCEL:set_and_save(3000)
end
if AEROM_ANG_TC:get() > 1.0 then
AEROM_ANG_TC:set_and_save(0.2)
end
ACRO_ROLL_RATE = Parameter("ACRO_ROLL_RATE")
ARSPD_FBW_MIN = Parameter("ARSPD_FBW_MIN")
SCALING_SPEED = Parameter("SCALING_SPEED")
local GRAVITY_MSS = 9.80665
--[[
Aerobatic tricks on a switch support - allows for tricks to be initiated outside AUTO mode
--]]
-- 2nd param table for tricks on a switch
local PARAM_TABLE_KEY2 = 71
local PARAM_TABLE_PREFIX2 = "TRIK"
assert(param:add_table(PARAM_TABLE_KEY2, PARAM_TABLE_PREFIX2, 63), 'could not add param table2')
-- add a parameter and bind it to a variable in table2
function bind_add_param2(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY2, idx, name, default_value), string.format('could not add param %s', name))
return Parameter(PARAM_TABLE_PREFIX2 .. name)
end
local TRIK_ENABLE = bind_add_param2("_ENABLE", 1, 0)
local TRICKS = nil
local TRIK_SEL_FN = nil
local TRIK_ACT_FN = nil
local TRIK_COUNT = nil
local function TrickDef(id, arg1, arg2, arg3, arg4)
local self = {}
self.id = id
self.args = {arg1, arg2, arg3, arg4}
return self
end
-- constrain a value between limits
function constrain(v, vmin, vmax)
if v < vmin then
v = vmin
end
if v > vmax then
v = vmax
end
return v
end
function sq(x)
return x*x
end
if TRIK_ENABLE:get() > 0 then
TRIK_SEL_FN = bind_add_param2("_SEL_FN", 2, 301)
TRIK_ACT_FN = bind_add_param2("_ACT_FN", 3, 300)
TRIK_COUNT = bind_add_param2("_COUNT", 4, 3)
TRICKS = {}
-- setup parameters for tricks
local count = math.floor(constrain(TRIK_COUNT:get(),1,11))
for i = 1, count do
local k = 5*i
local prefix = string.format("%u", i)
TRICKS[i] = TrickDef(bind_add_param2(prefix .. "_ID", k+0, i),
bind_add_param2(prefix .. "_ARG1", k+1, 30),
bind_add_param2(prefix .. "_ARG2", k+2, 0),
bind_add_param2(prefix .. "_ARG3", k+3, 0),
bind_add_param2(prefix .. "_ARG4", k+4, 0))
end
gcs:send_text(0, string.format("Enabled %u aerobatic tricks", TRIK_COUNT:get()))
end
local NAV_TAKEOFF = 22
local NAV_WAYPOINT = 16
local NAV_SCRIPT_TIME = 42702
local MODE_AUTO = 10
local LOOP_RATE = 20
local DO_JUMP = 177
local k_throttle = 70
local NAME_FLOAT_RATE = 2
local TRIM_ARSPD_CM = Parameter("TRIM_ARSPD_CM")
local last_id = 0
local current_task = nil
local last_named_float_t = 0
local path_var = {}
function wrap_360(angle)
local res = math.fmod(angle, 360.0)
if res < 0 then
res = res + 360.0
end
return res
end
function wrap_180(angle)
local res = wrap_360(angle)
if res > 180 then
res = res - 360
end
return res
end
function wrap_pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_180(angle_deg)
return math.rad(angle_wrapped)
end
function wrap_2pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_360(angle_deg)
return math.rad(angle_wrapped)
end
--[[
calculate an alpha for a first order low pass filter
--]]
function calc_lowpass_alpha(dt, time_constant)
local rc = time_constant/(math.pi*2)
return dt/(dt+rc)
end
-- a PI controller implemented as a Lua object
local function PI_controller(kP,kI,iMax,min,max)
-- the new instance. You can put public variables inside this self
-- declaration if you want to
local self = {}
-- private fields as locals
local _kP = kP or 0.0
local _kI = kI or 0.0
local _kD = kD or 0.0
local _iMax = iMax
local _min = min
local _max = max
local _last_t = nil
local _I = 0
local _P = 0
local _total = 0
local _counter = 0
local _target = 0
local _current = 0
-- update the controller.
function self.update(target, current)
local now = millis():tofloat() * 0.001
if not _last_t then
_last_t = now
end
local dt = now - _last_t
_last_t = now
local err = target - current
_counter = _counter + 1
local P = _kP * err
if ((_total < _max and _total > _min) or (_total >= _max and err < 0) or (_total <= _min and err > 0)) then
_I = _I + _kI * err * dt
end
if _iMax then
_I = constrain(_I, -_iMax, iMax)
end
local I = _I
local ret = P + I
_target = target
_current = current
_P = P
_total = ret
return ret
end
-- reset integrator to an initial value
function self.reset(integrator)
_I = integrator
end
function self.set_I(I)
_kI = I
end
function self.set_P(P)
_kP = P
end
function self.set_Imax(Imax)
_iMax = Imax
end
-- log the controller internals
function self.log(name, add_total)
-- allow for an external addition to total
logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total)
end
-- return the instance
return self
end
local function speed_controller(kP_param,kI_param, kFF_pitch_param, Imax, min, max)
local self = {}
local kFF_pitch = kFF_pitch_param
local PI = PI_controller(kP_param:get(), kI_param:get(), Imax, min, max)
function self.update(target, anticipated_pitch_rad)
local current_speed = ahrs:get_velocity_NED():length()
local throttle = PI.update(target, current_speed)
local FF = math.sin(anticipated_pitch_rad)*kFF_pitch:get()
PI.log("AESP", FF)
return throttle + FF
end
function self.reset()
PI.reset(0)
local temp_throttle = self.update(ahrs:get_velocity_NED():length(), 0)
local current_throttle = SRV_Channels:get_output_scaled(k_throttle)
PI.reset(current_throttle-temp_throttle)
end
return self
end
local speed_PI = speed_controller(SPD_P, SPD_I, THR_PIT_FF, 100.0, 0.0, 100.0)
function sgn(x)
local eps = 0.000001
if (x > eps) then
return 1.0
elseif x < eps then
return -1.0
else
return 0.0
end
end
function get_wp_location(i)
local m = mission:get_item(i)
local loc = Location()
loc:lat(m:x())
loc:lng(m:y())
loc:relative_alt(true)
loc:terrain_alt(false)
loc:origin_alt(false)
loc:alt(math.floor(m:z()*100))
return loc
end
function resolve_jump(i)
local m = mission:get_item(i)
while m:command() == DO_JUMP do
i = math.floor(m:param1())
m = mission:get_item(i)
end
return i
end
--[[
Wrapper to construct a Vector3f{x, y, z} from (x, y, z)
--]]
function makeVector3f(x, y, z)
local vec = Vector3f()
vec:x(x)
vec:y(y)
vec:z(z)
return vec
end
--[[
get quaternion rotation between vector1 and vector2
with thanks to https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another
--]]
function vectors_to_quat_rotation(vector1, vector2)
local v1 = vector1:copy()
local v2 = vector2:copy()
v1:normalize()
v2:normalize()
local dot = v1:dot(v2)
local a = v1:cross(v2)
local w = 1.0 + dot
local q = Quaternion()
q:q1(w)
q:q2(a:x())
q:q3(a:y())
q:q4(a:z())
q:normalize()
return q
end
--[[
get path rate from two tangents and delta time
--]]
function tangents_to_rate(t1, t2, dt)
local q_delta = vectors_to_quat_rotation(t1, t2)
local rate_rads = Vector3f()
q_delta:to_axis_angle(rate_rads)
rate_rads = rate_rads:scale(1.0/dt)
return rate_rads
end
--[[
trajectory building blocks. We have two types of building blocks,
roll blocks and path blocks. These are combined to give composite paths
--]]
--[[
all roll components inherit from RollComponent
--]]
function RollComponent()
local self = {}
self.name = nil
function self.get_roll(t)
return 0
end
return self
end
--[[
roll component that goes through a fixed total angle at a fixed roll rate
--]]
function roll_angle(_angle)
local self = RollComponent()
self.name = "roll_angle"
local angle = _angle
function self.get_roll(t)
return angle * t
end
return self
end
--[[
roll component that banks to _angle over AEROM_ENTRY_RATE
degrees/s, then holds that angle, then banks back to zero at
AEROM_ENTRY_RATE degrees/s
--]]
function roll_angle_entry_exit(_angle)
local self = RollComponent()
self.name = "roll_angle_entry_exit"
local angle = _angle
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
function self.get_roll(t, time_s)
local entry_t = entry_s / time_s
if entry_t > 0.5 then
entry_t = 0.5
end
if t <= 0 then
return 0
end
if t < entry_t then
return angle * t / entry_t
end
if t < 1.0 - entry_t then
return angle
end
if angle == 0 or t >= 1.0 then
return 0
end
return (1.0 - ((t - (1.0 - entry_t)) / entry_t)) * angle
end
return self
end
--[[
roll component that banks to _angle over AEROM_ENTRY_RATE
degrees/s, then holds that angle
--]]
function roll_angle_entry(_angle)
local self = RollComponent()
self.name = "roll_angle_entry"
local angle = _angle
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
function self.get_roll(t, time_s)
local entry_t = entry_s / time_s
if entry_t > 0.5 then
entry_t = 0.5
end
if t < entry_t then
return angle * t / entry_t
end
return angle
end
return self
end
--[[
roll component that holds angle until the end of the subpath, then
rolls back to 0 at the AEROM_ENTRY_RATE
--]]
function roll_angle_exit(_angle)
local self = {}
self.name = "roll_angle_exit"
local angle = _angle
local entry_s = math.abs(angle) / AEROM_ENTRY_RATE:get()
function self.get_roll(t, time_s)
local entry_t = entry_s / time_s
if t < 1.0 - entry_t then
return 0
end
if angle == 0 then
return 0
end
return ((t - (1.0 - entry_t)) / entry_t) * angle
end
return self
end
--[[
implement a sequence of rolls, specified as a list of {proportion, roll_angle} pairs
--]]
function roll_sequence(_seq)
local self = {}
local seq = _seq
local total = 0.0
local end_t = {}
local start_t = {}
local start_ang = {}
local angle = 0.0
for i = 1, #seq do
total = total + seq[i][1]
end
local t = 0.0
for i = 1, #seq do
start_t[i] = t
start_ang[i] = angle
angle = angle + seq[i][2]
t = t + seq[i][1]/total
end_t[i] = t
end
function self.get_roll(t)
for i = 1, #seq do
if t <= end_t[i] then
local t2 = (t - start_t[i])/(seq[i][1]/total)
return start_ang[i] + t2 * seq[i][2]
end
end
-- we've gone past the end
return start_ang[#seq] + seq[#seq][2]
end
return self
end
--[[
all path components inherit from PathComponent
--]]
function PathComponent()
local self = {}
self.name = nil
function self.get_pos(t)
return makeVector3f(0, 0, 0)
end
function self.get_length()
return 0
end
function self.get_final_orientation()
return Quaternion()
end
function self.get_roll_correction(t)
return 0
end
function self.get_throttle_boost(t)
return self.thr_boost or false
end
return self
end
--[[
rotate a vector by a quaternion
--]]
function quat_earth_to_body(quat, v)
local v = v:copy()
quat:earth_to_body(v)
return v
end
--[[
rotate a vector by a inverse quaternion
--]]
function quat_body_to_earth(quat, v)
local v = v:copy()
quat:inverse():earth_to_body(v)
return v
end
--[[
copy a quaternion
--]]
function quat_copy(q)
return q:inverse():inverse()
end
--[[
path component that does a straight horizontal line
--]]
function path_straight(_distance)
local self = PathComponent()
self.name = "path_straight"
local distance = _distance
function self.get_pos(t)
return makeVector3f(distance*t, 0, 0)
end
function self.get_length()
return distance
end
return self
end
--[[
path component that does a vertical arc over a given angle
--]]
function path_vertical_arc(_radius, _angle)
local self = PathComponent()
self.name = "path_vertical_arc"
local radius = _radius
local angle = _angle
function self.get_pos(t)
local t2ang = wrap_2pi(t * math.rad(angle))
return makeVector3f(math.abs(radius)*math.sin(t2ang), 0, -radius*(1.0 - math.cos(t2ang)))
end
function self.get_length()
return math.abs(radius) * 2 * math.pi * math.abs(angle) / 360.0
end
function self.get_final_orientation()
local q = Quaternion()
q:from_axis_angle(makeVector3f(0,1,0), sgn(radius)*math.rad(wrap_180(angle)))
q:normalize()
return q
end
return self
end
--[[
integrate a function, assuming fn takes a time t from 0 to 1
--]]
function integrate_length(fn)
local total = 0.0
local p = fn(0)
for i = 1, 100 do
local t = i*0.01
local p2 = fn(t)
local dv = p2 - p
total = total + dv:length()
p = p2
end
return total
end
--[[
path component that does a horizontal arc over a given angle
--]]
function path_horizontal_arc(_radius, _angle, _height_gain)
local self = PathComponent()
self.name = "path_horizontal_arc"
local radius = _radius
local angle = _angle
local height_gain = _height_gain
if height_gain == nil then
height_gain = 0
end
function self.get_pos(t)
local t2ang = t * math.rad(angle)
return makeVector3f(math.abs(radius)*math.sin(t2ang), radius*(1.0 - math.cos(t2ang)), -height_gain*t)
end
function self.get_length()
local circumference = 2 * math.pi * math.abs(radius)
local full_circle_height_gain = height_gain * 360.0 / math.abs(angle)
local helix_length = math.sqrt(full_circle_height_gain*full_circle_height_gain + circumference*circumference)
return helix_length * math.abs(angle) / 360.0
end
function self.get_final_orientation()
local q = Quaternion()
q:from_axis_angle(makeVector3f(0,0,1), sgn(radius)*math.rad(angle))
return q
end
--[[
roll correction for the rotation caused by height gain
--]]
function self.get_roll_correction(t)
if height_gain == 0 then
return 0
end
local gamma=math.atan(height_gain*(angle/360)/(2*math.pi*radius))
return -t*360*math.sin(gamma)
end
return self
end
--[[
path component that does a cylinder for a barrel roll
--]]
function path_cylinder(_radius, _length, _num_spirals)
local self = PathComponent()
self.name = "path_cylinder"
local radius = _radius
local length = _length
local num_spirals = _num_spirals
local gamma = math.atan((length/num_spirals)/(2*math.pi*radius))
local qrot = Quaternion()
qrot:from_axis_angle(makeVector3f(0,0,1), (0.5*math.pi)-gamma)
function self.get_pos(t)
local t2ang = t * num_spirals * math.pi * 2
local v = makeVector3f(length*t, math.abs(radius)*math.sin(t2ang+math.pi), -radius*(1.0 - math.cos(t2ang)))
return quat_earth_to_body(qrot, v)
end
function self.get_length()
local circumference = 2 * math.pi * math.abs(radius)
local length_per_spiral = length / num_spirals
local helix_length = math.sqrt(length_per_spiral*length_per_spiral + circumference*circumference)
return helix_length * num_spirals
end
--[[
roll correction for the rotation caused by the path
--]]
function self.get_roll_correction(t)
return t*360*math.sin(gamma)*num_spirals
end
return self
end
--[[
a Path has the methods of both RollComponent and
PathComponent allowing for a complete description of a subpath
--]]
function Path(_path_component, _roll_component)
local self = {}
self.name = string.format("%s|%s", _path_component.name, _roll_component.name)
local path_component = _path_component
local roll_component = _roll_component
function self.get_roll(t, time_s)
return wrap_180(roll_component.get_roll(t, time_s))
end
function self.get_roll_correction(t)
return path_component.get_roll_correction(t)
end
function self.get_pos(t)
return path_component.get_pos(t)
end
function self.get_speed(t)
return nil
end
function self.get_length()
return path_component.get_length()
end
function self.get_final_orientation()
return path_component.get_final_orientation()
end
function self.get_throttle_boost(t)
return self.thr_boost or false
end
return self
end
--[[
componse multiple sub-paths together to create a full trajectory
--]]
function path_composer(_name, _subpaths)
local self = {}
self.name = _name
local subpaths = _subpaths
local lengths = {}
local proportions = {}
local start_time = {}
local end_time = {}
local start_orientation = {}
local start_pos = {}
local start_angle = {}
local start_roll_correction = {}
local end_speed = {}
local start_speed = {}
local total_length = 0
local num_sub_paths = #subpaths
local last_subpath_t = { -1, 0, 0 }
local orientation = Quaternion()
local pos = makeVector3f(0,0,0)
local angle = 0
local roll_correction = 0
local speed = target_groundspeed()
local highest_i = 0
local cache_i = -1
local cache_sp = nil
local message = nil
-- return the subpath with index i. Used to cope with two ways of calling path_composer
function self.subpath(i)
if i == cache_i then
return cache_sp
end
cache_i = i
local sp = subpaths[i]
if sp.name then
-- we are being called with a list of Path objects
cache_sp = sp
message = nil
else
-- we are being called with a list function/argument tuples
local args = subpaths[i][2]
cache_sp = subpaths[i][1](args[1], args[2], args[3], args[4], start_pos[i], start_orientation[i])
message = subpaths[i].message
end
return cache_sp
end
for i = 1, num_sub_paths do
-- accumulate orientation, position and angle
start_orientation[i] = quat_copy(orientation)
start_pos[i] = pos:copy()
start_angle[i] = angle
start_roll_correction[i] = roll_correction
local sp = self.subpath(i)
lengths[i] = sp.get_length()
total_length = total_length + lengths[i]
local spos = quat_earth_to_body(orientation, sp.get_pos(1.0))
pos = pos + spos
orientation = sp.get_final_orientation() * orientation
orientation:normalize()
angle = angle + sp.get_roll(1.0, lengths[i]/speed)
roll_correction = roll_correction + sp.get_roll_correction(1.0)
start_speed[i] = speed
end_speed[i] = sp.get_speed(1.0)
if end_speed[i] == nil then
end_speed[i] = target_groundspeed()
end
speed = end_speed[i]
if sp.roll_ref ~= nil then
local q = Quaternion()
q:from_axis_angle(makeVector3f(1,0,0), math.rad(sp.roll_ref))
orientation = orientation * q
orientation:normalize()
end
end
-- get our final orientation, including roll
local final_orientation = quat_copy(orientation)
local q = Quaternion()
q:from_axis_angle(makeVector3f(1,0,0), math.rad(wrap_180(angle)))
final_orientation = q * final_orientation
-- work out the proportion of the total time we will spend in each sub path
local total_time = 0
for i = 1, num_sub_paths do
proportions[i] = lengths[i] / total_length
start_time[i] = total_time
end_time[i] = total_time + proportions[i]
total_time = total_time + proportions[i]
end
function self.get_subpath_t(t)
if last_subpath_t[1] == t then
-- use cached value
return last_subpath_t[2], last_subpath_t[3]
end
local i = 1
while t >= end_time[i] and i < num_sub_paths do
i = i + 1
end
local subpath_t = (t - start_time[i]) / proportions[i]
last_subpath_t = { t, subpath_t, i }
local sp = self.subpath(i)
if i > highest_i and t < 1.0 and t > 0 then
highest_i = i
if message ~= nil then
gcs:send_text(0, message)
end
if AEROM_DEBUG:get() > 0 then
gcs:send_text(0, string.format("starting %s[%d] %s", self.name, i, sp.name))
end
end
return subpath_t, i
end
-- return position at time t
function self.get_pos(t)
local subpath_t, i = self.get_subpath_t(t)
local sp = self.subpath(i)
return quat_earth_to_body(start_orientation[i], sp.get_pos(subpath_t)) + start_pos[i]
end
-- return angle for the composed path at time t
function self.get_roll(t, time_s)
local subpath_t, i = self.get_subpath_t(t)
local speed = self.get_speed(t)
if speed == nil then
speed = target_groundspeed()
end
local sp = self.subpath(i)
angle = sp.get_roll(subpath_t, lengths[i]/speed)
return angle + start_angle[i]
end
function self.get_roll_correction(t)
local subpath_t, i = self.get_subpath_t(t)
local sp = self.subpath(i)
return sp.get_roll_correction(subpath_t) + start_roll_correction[i]
end
-- return speed for the composed path at time t
function self.get_speed(t)
local subpath_t, i = self.get_subpath_t(t)
return start_speed[i] + subpath_t * (end_speed[i] - start_speed[i])
end
function self.get_length()
return total_length
end
function self.get_final_orientation()
return final_orientation
end
function self.get_throttle_boost(t)
local subpath_t, i = self.get_subpath_t(t)
local sp = self.subpath(i)
return sp.get_throttle_boost(t)
end
return self
end
--[[
make a list of Path() objects from a list of PathComponent, RollComponent pairs
--]]
function make_paths(name, paths)
local p = {}
for i = 1, #paths do
if paths[i][2] == nil then
p[i] = paths[i][1]
else
p[i] = Path(paths[i][1], paths[i][2])
end
if paths[i].roll_ref then
p[i].roll_ref = paths[i].roll_ref
end
p[i].thr_boost = paths[i].thr_boost
end
return path_composer(name, p)
end
--[[
composed trajectories, does as individual aerobatic maneuvers
--]]
function climbing_circle(radius, height, bank_angle, arg4)
return make_paths("climbing_circle", {
{ path_horizontal_arc(radius, 360, height), roll_angle_entry_exit(bank_angle) },
})
end
function half_climbing_circle(radius, height, bank_angle, arg4)
return make_paths("half_climbing_circle", {
{ path_horizontal_arc(radius, 180, height), roll_angle_entry_exit(bank_angle) },
})
end
function partial_circle(radius, bank_angle, angle)
return make_paths("partial_circle", {
{ path_horizontal_arc(radius, angle, 0), roll_angle_entry_exit(bank_angle) },
})
end
function loop(radius, bank_angle, num_loops, arg4)
if not num_loops or num_loops <= 0 then
num_loops = 1
end
return make_paths("loop", {
{ path_vertical_arc(radius, 360*num_loops), roll_angle_entry_exit(bank_angle) },
})
end
function straight_roll(length, num_rolls, arg3, arg4)
return make_paths("straight_roll", {
{ path_straight(length), roll_angle(num_rolls*360) },
})
end
--[[
fly straight until we are distance meters from the composite path
origin in the maneuver frame along the X axis. If we are already
past that position then return immediately
--]]
function straight_align(distance, arg2, arg3, arg4, start_pos, start_orientation)
local d2 = distance - start_pos:x()
local v = quat_earth_to_body(start_orientation, makeVector3f(d2, 0, 0))
local len = math.max(v:x(),0.01)
return make_paths("straight_align", {
{ path_straight(len), roll_angle(0) },
})
end
function immelmann_turn(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("immelmann_turn", {
{ path_vertical_arc(r, 180), roll_angle(0) },
{ path_straight(rabs/2), roll_angle(180) },
})
end
-- immelmann with max roll rate
function immelmann_turn_fast(r, arg2, arg3, arg4)
local rabs = math.abs(r)
local roll_time = 180.0 / ACRO_ROLL_RATE:get()
local roll_dist = target_groundspeed() * roll_time
return make_paths("immelmann_turn_fast", {
{ path_vertical_arc(r, 180), roll_angle(0) },
{ path_straight(roll_dist), roll_angle(180) },
})
end
function humpty_bump(r, h, arg3, arg4)
assert(h >= 2*r)
local rabs = math.abs(r)
return make_paths("humpty_bump", {
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(180) },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(-r, 180), roll_angle(0) },
{ path_straight(h-2*rabs), roll_angle(0) },
{ path_vertical_arc(-r, 90), roll_angle(0) },
{ path_straight(2*rabs), roll_angle(0) },
})
end
function crossbox_humpty(r, h, arg3, arg4)
assert(h >= 2*r)
local rabs = math.abs(r)
return make_paths("crossbox_humpty", {
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=90 },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(-r, 180), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=-90 },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0), roll_ref=180 },
})
end
function laydown_humpty(r, h, arg3, arg4)
assert(h >= 2*r)
local rabs = math.abs(r)
return make_paths("laydown_humpty", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(-90), roll_ref=90 },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(r, 180), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_straight((h-2*rabs)/3), roll_angle(90), roll_ref=-90 },
{ path_straight((h-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(-r, 45), roll_angle(0), roll_ref=180},
})
end
function split_s(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("split_s", {
{ path_straight(rabs/2), roll_angle(180) },
{ path_vertical_arc(-r, 180), roll_angle(0) },
})
end
function upline_45(r, height_gain, arg3, arg4)
--local h = (height_gain - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
local h = (height_gain - (2 * r) + (2 * r * math.cos(math.rad(45)))) / math.cos(math.rad(45))
assert(h >= 0)
return make_paths("upline_45", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(-r, 45), roll_angle(0) },
})
end
function upline_20(r, height_gain, arg3, arg4)
local h = (height_gain - 2*r*(1.0-math.cos(math.rad(20))))/math.sin(math.rad(20))
assert(h >= 0)
return make_paths("upline_45", {
{ path_vertical_arc(r, 20), roll_angle(0) },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(-r, 20), roll_angle(0) },
})
end
function downline_45(r, height_loss, arg3, arg4)
local h = (height_loss - 2*r*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
assert(h >= 0)
return make_paths("downline_45", {
{ path_vertical_arc(-r, 45), roll_angle(0) },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(r, 45), roll_angle(0) },
})
end
function rolling_circle(radius, num_rolls, arg3, arg4)
return make_paths("rolling_circle", {
{ path_horizontal_arc(radius, 360), roll_angle(360*num_rolls), thr_boost=true },
})
end
function cylinder(radius, length, num_spirals, arg4)
return make_paths("cylinder", {
{ path_cylinder(radius, length, num_spirals), roll_angle(0), thr_boost=true },
})
end
function barrel_roll(radius, length, num_spirals, arg4)
local gamma_deg = math.deg(math.atan((length/num_spirals)/(2*math.pi*radius)))
local speed = target_groundspeed()
local bank = math.deg(math.atan((speed*speed) / (radius * GRAVITY_MSS)))
local radius2 = radius/(1.0 - math.cos(math.rad(90-gamma_deg)))
return make_paths("barrel_roll", {
{ path_horizontal_arc(-radius2, 90-gamma_deg, 0), roll_angle_entry_exit(-bank) },
{ path_cylinder(radius, length, num_spirals), roll_angle(0) },
{ path_horizontal_arc(radius2, 90-gamma_deg, 0), roll_angle_entry_exit(bank) },
})
end
function side_step(displacement, length, arg3, arg4)
local speed = target_groundspeed()
local radius = (displacement*displacement + length*length)/(4*displacement)
local angle = math.deg(2*math.atan(displacement, length))
local sign = sgn(displacement)
local bank = math.deg(math.atan((speed*speed) / (radius * GRAVITY_MSS)))
displacement = math.abs(displacement)
return make_paths("side_step",{
{path_horizontal_arc(sign*radius, angle, 0), roll_angle_entry_exit(sign*bank)},
{path_horizontal_arc(-sign*radius, angle, 0) , roll_angle_entry_exit(-sign*bank)},
})
end
function straight_flight(length, bank_angle, arg3, arg4)
return make_paths("straight_flight", {
{ path_straight(length), roll_angle_entry_exit(bank_angle) },
})
end
function straight_hold(length, bank_angle, arg3, arg4)
return make_paths("straight_hold", {
{ path_straight(length), roll_angle_entry(bank_angle) },
})
end
function scale_figure_eight(r, bank_angle, arg3, arg4)
local rabs = math.abs(r)
return make_paths("scale_figure_eight", {
{ path_straight(rabs), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_horizontal_arc(-r, 360), roll_angle_entry_exit(-bank_angle) },
{ path_horizontal_arc(r, 270), roll_angle_entry_exit(bank_angle) },
{ path_straight(3*rabs), roll_angle(0) },
})
end
function figure_eight(r, bank_angle, arg3, arg4)
local rabs = math.abs(r)
return make_paths("figure_eight", {
{ path_straight(rabs*math.sqrt(2)), roll_angle(0) },
{ path_horizontal_arc(r, 225), roll_angle_entry_exit(bank_angle) },
{ path_straight(2*rabs), roll_angle(0) },
{ path_horizontal_arc(-r, 270), roll_angle_entry_exit(-bank_angle) },
{ path_straight(2*rabs), roll_angle(0) },
{ path_horizontal_arc(r, 45), roll_angle_entry_exit(bank_angle) },
})
end
--[[
stall turn is not really correct, as we don't fully stall. Needs to be
reworked
--]]
function stall_turn(radius, height, direction, min_speed)
local h = height - radius
assert(h >= 0)
return make_paths("stall_turn", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight(h), roll_angle(0), min_speed },
{ path_horizontal_arc(5*direction, 180), roll_angle(0), min_speed },
{ path_straight(h), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function half_cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("half_cuban_eight", {
{ path_straight(2*rabs*math.sqrt(2)), roll_angle(0) },
{ path_vertical_arc(r, 225), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 45), roll_angle(0) },
})
end
function cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("cuban_eight", {
{ path_straight(rabs*math.sqrt(2)), roll_angle(0) },
{ path_vertical_arc(r, 225), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 270), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(r, 45), roll_angle(0) },
})
end
function half_reverse_cuban_eight(r, arg2, arg3, arg4)
local rabs = math.abs(r)
return make_paths("half_reverse_cuban_eight", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_straight(2*rabs/3), roll_angle(180) },
{ path_straight(2*rabs/3), roll_angle(0) },
{ path_vertical_arc(-r, 225), roll_angle(0) },
})
end
function horizontal_rectangle(total_length, total_width, r, bank_angle)
local l = total_length - 2*r
local w = total_width - 2*r
return make_paths("horizontal_rectangle", {
{ path_straight(0.5*l), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle)},
{ path_straight(w), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(l), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(w), roll_angle(0) },
{ path_horizontal_arc(r, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(0.5*l), roll_angle(0) },
})
end
function vertical_aerobatic_box(total_length, total_width, r, bank_angle)
local l = total_length - 2*r
local w = total_width - 2*r
return make_paths("vertical_aerobatic_box", {
{ path_straight(0.5*l), roll_angle_entry(bank_angle) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(w), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(w), roll_angle(0) },
{ path_vertical_arc(r, 90), roll_angle(0) },
{ path_straight(0.5*l), roll_angle_exit(-bank_angle) },
})
end
function multi_point_roll(length, N, arg3, arg4)
local paths = {}
local len_roll = length * (N-1) / (N*4-1)
local len_hold = length / (N*4-1)
local ang = 360 / N
for i = 1, N do
paths[#paths+1] = { path_straight(len_roll), roll_angle(ang) }
paths[#paths+1] = { path_straight(len_hold), roll_angle(0) }
end
return make_paths("multi_point_roll", paths)
end
function two_point_roll(length, arg2, arg3, arg4)
return multi_point_roll(length, 2)
end
function four_point_roll(length, arg2, arg3, arg4)
return multi_point_roll(length, 4)
end
function eight_point_roll(length, arg2, arg3, arg4)
return multi_point_roll(length, 8)
end
function procedure_turn(radius, bank_angle, step_out, arg4)
local rabs = math.abs(radius)
return make_paths("procedure_turn", {
{ path_straight(rabs), roll_angle(0) },
{ path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) },
{ path_straight(step_out), roll_angle(0) },
{ path_horizontal_arc(-radius, 270), roll_angle_entry_exit(-bank_angle) },
{ path_straight(4*rabs), roll_angle(0) },
})
end
function derry_turn(radius, bank_angle, arg3, arg4)
return make_paths("derry_turn", {
{ path_horizontal_arc(radius, 90), roll_angle_entry_exit(bank_angle) },
{ path_horizontal_arc(-radius, 90), roll_angle_entry_exit(-bank_angle) },
})
end
function p23_1(radius, height, width, arg4) -- top hat
return make_paths("p23_1", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)), roll_sequence({{2,0}, {2, 90}, {1, 0}, {2, 90}, {2, 0}}) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((width-2*radius)), roll_sequence({{1,0}, {1, 180}, {1, 0}}) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)), roll_sequence({{2,0}, {2, 90}, {1, 0}, {2, 90}, {2, 0}}) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function p23_2(radius, height, arg3, arg4) -- half square
return make_paths("p23_2", {
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
})
end
function p23_3(radius, height, arg3, arg4) -- humpty
return make_paths("p23_3", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/8), roll_angle(0) },
{ path_straight((height-2*radius)*6/8), roll_angle(360) },
{ path_straight((height-2*radius)/8), roll_angle(0) },
{ path_vertical_arc(radius, 180), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function p23_4(radius, height, arg3, arg4) -- on corner
local l = ((height - (2 * radius)) * math.sin(math.rad(45)))
return make_paths("p23_4", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l/3), roll_angle(0) },
{ path_straight(l/3), roll_angle(180) },
{ path_straight(l/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight(l/3), roll_angle(0) },
{ path_straight(l/3), roll_angle(180) },
{ path_straight(l/3), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
})
end
function p23_5(radius, height_gain, arg3, arg4) -- 45 up - should be 1 1/2 snaps....
--local l = (height_gain - 2*radius*(1.0-math.cos(math.rad(45))))/math.sin(math.rad(45))
local l = (height_gain - (2 * radius) + (2 * radius * math.cos(math.rad(45)))) / math.cos(math.rad(45))
return make_paths("p23_5", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l/3), roll_angle(0) },
{ path_straight(l/3), roll_angle(540) },
{ path_straight(l/3), roll_angle(0) },
{ path_vertical_arc(radius, 45), roll_angle(0) },
})
end
function p23_6(radius, height_gain, arg3, arg4) -- 3 sided
local l = (height_gain - 2*radius) / ((2*math.sin(math.rad(45))) + 1)
return make_paths("p23_6", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(l), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0) },
})
end
function p23_7(length, arg2, arg3, arg4) -- roll combination
return make_paths("p23_7", {
{ path_straight(length*5/22), roll_angle(180) },
{ path_straight(length*1/22), roll_angle(0) },
{ path_straight(length*5/22), roll_angle(180) },
{ path_straight(length*5/22), roll_angle(-180) },
{ path_straight(length*1/22), roll_angle(0) },
{ path_straight(length*5/22), roll_angle(-180) },
})
end
function p23_8(radius, height, arg3, arg4) -- immelmann
return make_paths("p23_8", {
{ path_vertical_arc(-radius, 180), roll_angle(0) },
{ path_straight(radius/2), roll_angle(180) },
})
end
function p23_9(radius, height, num_turns, arg4) -- spin (currently a vert down 1/2 roll)
return make_paths("p23_9", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight(height-2*radius), roll_angle(180) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
})
end
function p23_10(radius, height, arg3, arg4) -- humpty
return make_paths("p23_10", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 180), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
})
end
function p23_11(radius, height, arg3, arg4) -- laydown loop
local rabs = math.abs(radius)
local vert_length = height - (2 * rabs)
local angle_length = ((2 * rabs) - (2 * (rabs - (rabs * (math.cos(math.rad(45))))))) / math.sin(math.rad(45))
return make_paths("p23_11", {
{ path_vertical_arc(-radius, 45), roll_angle(0) },
{ path_straight(angle_length*2/6), roll_angle(0) },
{ path_straight(angle_length*1/6), roll_angle(180) },
{ path_straight(angle_length*1/6), roll_angle(-180) },
{ path_straight(angle_length*2/6), roll_angle(0) },
{ path_vertical_arc(radius, 315), roll_angle(0) },
{ path_straight(vert_length*2/9), roll_angle(0) },
{ path_straight(vert_length*2/9), roll_angle(90) },
{ path_straight(vert_length*1/9), roll_angle(0) },
{ path_straight(vert_length*2/9), roll_angle(90) },
{ path_straight(vert_length*2/9), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
})
end
function p23_12(radius, height, arg3, arg4) -- 1/2 square
return make_paths("p23_12", {
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(180) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
})
end
function p23_13(radius, height, arg3, arg4) -- stall turn
return make_paths("p23_13", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(90) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_straight((height-2*radius)/3), roll_angle(90) },
{ path_straight((height-2*radius)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 90), roll_angle(0) },
})
end
function p23_13a(radius, height, arg3, arg4) -- stall turn PLACE HOLDER
assert(height >= 2*radius)
local rabs = math.abs(radius)
return make_paths("P23_13a", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((height-2*rabs)/3), roll_angle(0) },
{ path_straight((height-2*rabs)/3), roll_angle(90), roll_ref=90 },
{ path_straight((height-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(-radius, 180), roll_angle(0) },
{ path_straight((height-2*rabs)/3), roll_angle(0) },
{ path_straight((height-2*rabs)/3), roll_angle(90), roll_ref=-90 },
{ path_straight((height-2*rabs)/3), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0), roll_ref=180 },
})
end
function p23_14(r, h, arg3, arg4) -- fighter turn
assert(h >= 2*r)
local rabs = math.abs(r)
local angle_length = (h - ((0.2929 * rabs)) / (math.sin(math.rad(45)))) - rabs
return make_paths("fighter_turn", {
{ path_vertical_arc(r, 45), roll_angle(0) },
{ path_straight((angle_length)/3), roll_angle(0) },
{ path_straight((angle_length)/3), roll_angle(-90), roll_ref=90 },
{ path_straight((angle_length)/3), roll_angle(0) },
{ path_vertical_arc(r, 180), roll_angle(0) },
{ path_straight((angle_length)/3), roll_angle(0) },
{ path_straight((angle_length)/3), roll_angle(90), roll_ref=-90 },
{ path_straight((angle_length)/3), roll_angle(0) },
{ path_vertical_arc(-r, 45), roll_angle(0), roll_ref=180 },
})
end
function p23_15(radius, height, arg3, arg4) -- triangle
local h1 = radius * math.sin(math.rad(45))
local h2 = (2 * radius) - (radius * math.cos(math.rad(45)))
local h3 = height - (2 * radius)
local side = h3 / math.cos(math.rad(45))
--local base = (h3 + (2 * (radius - radius * math.cos(math.rad(45))))) - (2 * radius)
local base = (2 * (h3 + radius)) - 2 * radius
return make_paths("p23_15", {
{ path_straight(base * 1/5), roll_angle(180) },
{ path_straight(base * 2/5), roll_angle(0) },
{ path_vertical_arc(radius, 135) , roll_angle(0) },
{ path_straight(side*2/9), roll_angle(0) },
{ path_straight(side*2/9), roll_angle(90) },
{ path_straight(side*1/9), roll_angle(0) },
{ path_straight(side*2/9), roll_angle(90) },
{ path_straight(side*2/9), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight(side*2/9), roll_angle(0) },
{ path_straight(side*2/9), roll_angle(90) },
{ path_straight(side*1/9), roll_angle(0) },
{ path_straight(side*2/9), roll_angle(90) },
{ path_straight(side*2/9), roll_angle(0) },
{ path_vertical_arc(radius, 135), roll_angle(0) },
{ path_straight(base * 2/5), roll_angle(0) },
{ path_straight(base * 1/5), roll_angle(180) },
{ path_straight(base * 2/5), roll_angle(0) },
})
end
function p23_16(radius, height, arg3, arg4) -- sharks tooth
local angle_length = (height - 2 * (radius - (radius * math.cos(math.rad(45))))) / math.cos(math.rad(45))
local vert_length = height - (2 * radius)
return make_paths("p23_16", {
{ path_vertical_arc(radius, 90), roll_angle(0) },
{ path_straight((vert_length)/3), roll_angle(0) },
{ path_straight((vert_length)/3), roll_angle(180) },
{ path_straight((vert_length)/3), roll_angle(0) },
{ path_vertical_arc(radius, 135), roll_angle(0) },
{ path_straight(angle_length*2/9), roll_angle(0) },
{ path_straight(angle_length*2/9), roll_angle(90) },
{ path_straight(angle_length*1/9), roll_angle(0) },
{ path_straight(angle_length*2/9), roll_angle(90) },
{ path_straight(angle_length*2/9), roll_angle(0) },
{ path_vertical_arc(-radius, 45), roll_angle(0), roll_ref=180 },
})
end
function p23_17(radius, arg2, arg3, arg4) -- loop
return make_paths("p23_17", {
{ path_vertical_arc(radius, 135), roll_angle(0) },
{ path_vertical_arc(radius, 90), roll_angle(180) },
{ path_vertical_arc(radius, 135), roll_angle(0), roll_ref=180 },
})
end
function half_roll(arg1, arg2, arg3, arg4) -- half roll for testing inverted manouvers
return make_paths("half_roll", {
{ path_straight(40), roll_angle(180) },
{ path_straight(10), roll_angle(0) },
})
end
function fai_f3a_box_l_r()
return path_composer("f3a_box_l_r", { -- positioned for a flight line 150m out. Flight line 520m total length.
-- Script start point is ON CENTER, with the model heading DOWNWIND!
{ straight_roll, { 150, 0 } },
{ half_reverse_cuban_eight, { 95 } },
{ straight_align, { 0, 0 } },
{ vertical_aerobatic_box, { 540, 190, 45, 0 }, message="Starting Box Demo"},
{ vertical_aerobatic_box, { 540, 190, 45, 0 } },
{ vertical_aerobatic_box, { 540, 190, 45, 0 } },
{ vertical_aerobatic_box, { 540, 190, 45, 0 } },
{ straight_roll, { 50, 0 } }
})
end
--[[
NZ clubman schedule
--]]
function nz_clubman() -- positioned for a flight line 100m out
-- Script start point is ON CENTER, with the model heading DOWNWIND!
return path_composer("nz_clubman_l_r", {
--[[
{ straight_roll, { 20, 0 } },
{ procedure_turn, { 20, 45, 60 } },
{ straight_roll, { 150, 0 } },
{ half_reverse_cuban_eight, { 40 } },
{ straight_roll, { 150, 0 } },
--]]
{ straight_roll, { 150, 0 } },
{ half_reverse_cuban_eight, { 90 } },
{ straight_align, { 0, 0 } },
{ cuban_eight, { 90 }, message="Cuban Eight"},
{ straight_align, { -100, 0 } },
{ half_reverse_cuban_eight, { 90 } },
{ straight_align, { 40, 0 } },
{ half_reverse_cuban_eight, { 90 }, message="Half Rev Cuban"},
{ straight_align, { -180, 0 } },
{ half_reverse_cuban_eight, { 90 } },
{ straight_align, { -120, 0 } },
{ two_point_roll, { 240 }, message="Two Point Roll"},
{ straight_align, { 150, 0 } },
{ half_reverse_cuban_eight, { 90 } },
{ straight_align, { 106, 0 } },
{ upline_45, { 40, 180 }, message="45 Upline"},
{ straight_align, { -180, 0 } }, -- missing the stall turn
{ split_s, { 90, 90 } },
{ straight_align, { -120, 0 } },
{ straight_roll, { 240, 1 }, message="Slow Roll"},
{ straight_align, { 150, 0 } },
{ half_cuban_eight, { 90 } },
{ straight_align, { 0, 0 } },
{ loop, { 90, 0, 2 }, message="Two Loops"},
{ straight_align, { -180, 0 } },
{ immelmann_turn, { 90, 90 } },
{ straight_align, { -106, 0 } },
{ downline_45, { 40, 180 }, message="45 Downline"},
{ straight_align, { 150, 0 } },
{ half_cuban_eight, { 90 } },
{ straight_roll, { 100, 0 } },
})
end
--[[
F3A p23, preliminary schedule 2023
--]]
function f3a_p23_l_r()
return path_composer("f3a_p23_l_r", { -- positioned for a flight line 150m out. Flight line 520m total length.
-- Script start point is ON CENTER, with the model heading DOWNWIND!
{ straight_roll, { 160, 0 } },
{ half_reverse_cuban_eight, { 80 } },
{ straight_align, { 140, 0 } },
{ p23_1, { 40, 200, 200 }, message="Top Hat"},
{ straight_align, { -220, 0 } },
{ p23_2, { 40, 200 }, message="Half Square Loop"},
{ straight_align, { 0, 0 } },
{ p23_3, { 40, 200 }, message="Humpty"},
{ straight_align, { 160, 0 } },
{ p23_4, { 40, 200 }, message="Half Square on Corner"},
{ straight_align, { 116, 0 } },
{ p23_5, { 40, 200 }, message="45 Up"}, -- snap roll
{ straight_align, { -185, 0 } },
{ p23_6, { 40, 200 }, message="Half Eight Sided Loop"},
{ straight_align, { -100, 0 } },
{ p23_7, { 200 }, message="Roll Combination"},
{ straight_align, { 160, 0 } },
{ p23_8, { 100 }, message="Immelmann Turn"},
{ straight_align, { 40, 0 } },
{ p23_9, { 40, 200 }, message="Should be a Spin"}, -- spin
{ straight_align, { -140, 0 } },
{ p23_10, { 40, 200 }, message="Humpty"},
{ straight_align, { -91, 0 } },
{ p23_11, { 50, 200 }, message="Laydown Loop"},
{ straight_align, { 220, 0 } },
{ p23_12, { 40, 200 }, message="Half Square Loop"},
{ straight_align, { 40, 0 } },
{ p23_13a, { 40, 200 }, message="Stall Turn"}, -- stall turn
{ straight_roll, { 100, 0 } },
{ p23_14, { 40, 180 }, message="Fighter Turn"},
{ straight_align, { -24, 0 } },
{ p23_15, { 40, 200 }, message="Triangle"},
{ straight_align, { 220, 0 } },
{ p23_16, { 40, 160 }, message="Sharks Tooth"},
{ straight_align, { 0, 0 } },
{ p23_17, { 100 }, message="Loop"},
{ straight_roll, { 100, 0 } },
})
end
--[[
F4C Scale Schedule Example
--]]
function f4c_example_l_r() -- positioned for a flight line nominally 150m out (some manouvers start 30m out)
-- Script start point is ON CENTER @ 150m, with the model heading DOWNWIND ie flying Right to Left!
return path_composer("f4c_example", {
{ straight_roll, { 320, 0 } },
{ half_climbing_circle, { -70, 0, -60 } }, -- come in close for the first two manouvers
--{ straight_roll, { 10, 0 } },
{ straight_align, { 280, 0 } },
{ scale_figure_eight, { -140, -30 }, message="Scale Figure Eight"},
{ straight_roll, { 80, 0 } },
{ immelmann_turn, { 90 } },
{ straight_align, { 0, 0 } },
--{ straight_roll, { 340, 0 } },
{ climbing_circle, { 140, -205, 30 }, message="Descending 360"},
{ straight_roll, { 40, 0 } },
{ upline_20, { 80, 25 } }, -- Climb up 25m to base height
{ straight_roll, { 50, 0 } },
{ half_climbing_circle, { 70, 0, 60 } }, -- Go back out to 150m
{ straight_align, { 0, 0 } },
{ loop, { 90, 0, 1 }, message="Loop"},
{ straight_align, { -50, 0 } },
{ half_reverse_cuban_eight, { 90 } },
{ straight_align, { 0, 0 } },
{ immelmann_turn, { 90 }, message="Immelmann Turn"},
{ straight_align, { -140, 0 } },
{ split_s, { 90 } },
{ straight_align, { 0, 0 } },
{ half_cuban_eight, { 90 }, message="Half Cuban Eight"},
{ straight_align, { -180, 0 } },
{ half_climbing_circle, { 70, 0, 60 } },
--{ straight_roll, { 115, 0 } },
{ straight_align, { -90, 0 } },
{ derry_turn, { 90, 60 }, message="Derry Turn"},
{ straight_roll, { 200, 0 } },
{ half_climbing_circle, { -90, 0, -60 } },
{ straight_align, { 0, 0 } },
{ climbing_circle, { -140, 0, -30 }, message="Gear Demo"},
{ straight_roll, { 250, 0 } },
{ half_climbing_circle, { -100, 0, -60 } },
{ straight_align, { -185, 0 } },
{ barrel_roll, { 90, 240, 1 }, message="Barrel Roll"},
{ straight_roll, { 60, 0 } },
{ half_reverse_cuban_eight, { 90 }},
{ straight_roll, { 60, 0 } },
})
end
--[[
simple air show
--]]
function air_show1()
return path_composer("AirShow", {
{ loop, { 25, 0, 1 }, message="Loop"},
{ straight_align, { 80, 0 } },
{ half_reverse_cuban_eight, { 25 }, message="HalfReverseCubanEight" },
{ straight_align, { 80 } },
{ scale_figure_eight, { -40, -45 }, message="ScaleFigureEight" },
{ immelmann_turn, { 30 }, message="Immelmann" },
{ straight_align, { -40, 0 } },
{ straight_roll, { 80, 2 }, message="Roll" },
{ straight_align, { 120, 0 } },
{ split_s, { 30 }, message="Split-S"},
{ straight_align, { 0 } },
{ rolling_circle, { -50, 3}, message="RollingCircle" },
{ straight_align, { -50, 0 } },
{ humpty_bump, { 20, 60 }, message="HumptyBump" },
{ straight_align, { 80, 0 } },
{ half_cuban_eight, { 25 }, message="HalfCubanEight" },
{ straight_align, { 75, 0 } },
{ upline_45, { 30, 50 }, message="Upline45", },
{ downline_45, { 30, 50 }, message="Downline45" },
{ half_reverse_cuban_eight, { 25 }, message="HalfReverseCubanEight" },
{ straight_align, { 0 } },
})
end
function air_show3()
return path_composer("AirShow3", {
{ air_show1, {}, message="AirShowPt1" },
{ air_show1, {}, message="AirShowPt2" },
{ air_show1, {}, message="AirShowPt3" },
})
end
function test_all_paths()
return path_composer("test_all_paths", {
{ figure_eight, { 100, 45 } },
{ straight_roll, { 20, 0 } },
{ loop, { 30, 0, 1 } },
{ straight_roll, { 20, 0 } },
{ horizontal_rectangle, { 100, 100, 20, 45 } },
{ straight_roll, { 20, 0 } },
{ climbing_circle, { 100, 20, 45 } },
{ straight_roll, { 20, 0 } },
{ vertical_aerobatic_box, { 100, 100, 20, 0 } },
{ straight_roll, { 20, 0 } },
{ rolling_circle, { 100, 2, 0, 0 } },
{ straight_roll, { 20, 0 } },
{ half_cuban_eight, { 30, } },
{ straight_roll, { 20, 0 } },
{ half_reverse_cuban_eight, { 30, } },
{ straight_roll, { 20, 0 } },
{ cuban_eight, { 30, } },
{ straight_roll, { 20, 0 } },
{ humpty_bump, { 30, 100 } },
{ straight_flight, { 100, 45 } },
{ scale_figure_eight, { 100, 45 } },
{ straight_roll, { 20, 0 } },
{ immelmann_turn, { 30, 60 } },
{ straight_roll, { 20, 0 } },
{ split_s, { 30, 60 } },
{ straight_roll, { 20, 0 } },
{ upline_45, { 20, 50 } },
{ straight_roll, { 20, 0 } },
{ downline_45, { 20, 50 } },
{ straight_roll, { 20, 0 } },
{ procedure_turn, { 40, 45, 20 } },
{ straight_roll, { 20, 0 } },
{ two_point_roll, { 100 } },
{ straight_roll, { 20, 0 } },
{ derry_turn, { 40, 60 } },
{ straight_roll, { 20, 0 } },
{ half_climbing_circle, { -65, 0, -60 } },
{ straight_roll, { 20, 0 } },
--[[
{ p23_1, { 20, 150, 150 } },
{ straight_roll, { 20, 0 } },
{ p23_2, { 20, 150 } },
{ straight_roll, { 20, 0 } },
{ p23_3, { 20, 150 } },
{ straight_roll, { 20, 0 } },
{ p23_4, { 20, 150 } },
{ straight_roll, { 20, 0 } },
{ p23_5, { 20, 150 } },
{ straight_roll, { 20, 0 } },
{ p23_6, { 20, 150 } }, -- now inverted :-)
{ straight_roll, { 20, 0 } },
--]]
})
end
---------------------------------------------------
--[[
target speed is taken as max of target airspeed and current 3D
velocity at the start of the maneuver
--]]
function target_groundspeed()
return math.max(ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01, ahrs:get_velocity_NED():length())
end
--[[
get ground course from AHRS
--]]
function get_ground_course_deg()
local vned = ahrs:get_velocity_NED()
return wrap_180(math.deg(math.atan(vned:y(), vned:x())))
end
--args:
-- path_f: path function returning position
-- t: normalised [0, 1] time
-- arg1, arg2: arguments for path function
-- orientation: maneuver frame orientation
--returns: requested position, angle and speed in maneuver frame
function rotate_path(path_f, t, orientation, offset)
local t = constrain(t, 0, 1)
local point = path_f.get_pos(t)
local angle = path_f.get_roll(t)
local roll_correction = path_f.get_roll_correction(t)
local speed = path_f.get_speed(t)
local thr_boost = path_f.get_throttle_boost(t)
local point = quat_earth_to_body(orientation, point)
local scale = AEROM_PATH_SCALE:get()
point = point:scale(math.abs(scale))
if scale < 0 then
-- we need to mirror the path
point:y(-point:y())
roll_correction = -roll_correction
angle = -angle
-- compensate path orientation for the mirroring
local orient = orientation:inverse()
point = quat_body_to_earth((orient * orient), point)
end
return point+offset, math.rad(angle+roll_correction), speed, thr_boost
end
--Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
--Note that the rotation will not be unique.
function vectors_to_rotation(vector1, vector2)
local axis = vector1:cross(vector2)
if axis:length() < 0.00001 then
local vec = Vector3f()
vec:x(1)
return vec, 0
end
axis:normalize()
local angle = vector1:angle(vector2)
return axis, angle
end
--returns Quaternion
function vectors_to_rotation_w_roll(vector1, vector2, roll)
local axis, angle = vectors_to_rotation(vector1, vector2)
local vector_rotation = Quaternion()
vector_rotation:from_axis_angle(axis, angle)
local roll_rotation = Quaternion()
roll_rotation:from_euler(roll, 0, 0)
local total_rot = vector_rotation*roll_rotation
return to_axis_and_angle(total_rot)
end
--Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
function vectors_to_angular_rate(vector1, vector2, time_constant)
local axis, angle = vectors_to_rotation(vector1, vector2)
local angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll)
local axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll)
local angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
-- convert a quaternion to axis angle form
function to_axis_and_angle(quat)
local axis_angle = Vector3f()
quat:to_axis_angle(axis_angle)
local angle = axis_angle:length()
if angle < 0.00001 then
return makeVector3f(1.0, 0.0, 0.0), 0.0
end
return axis_angle:scale(1.0/angle), angle
end
--projects x onto the othogonal subspace of span(unit_v)
function ortho_proj(x, unit_v)
local temp_x = unit_v:cross(x)
return unit_v:cross(temp_x)
end
-- log a pose from position and quaternion attitude
function log_pose(logname, pos, quat)
logger.write(logname, 'px,py,pz,q1,q2,q3,q4,r,p,y','ffffffffff',
pos:x(),
pos:y(),
pos:z(),
quat:q1(),
quat:q2(),
quat:q3(),
quat:q4(),
math.deg(quat:get_euler_roll()),
math.deg(quat:get_euler_pitch()),
math.deg(quat:get_euler_yaw()))
end
--[[
check if a number is Nan.
--]]
function isNaN(value)
-- NaN is lua is not equal to itself
return value ~= value
end
function Vec3IsNaN(v)
return isNaN(v:x()) or isNaN(v:y()) or isNaN(v:z())
end
function qIsNaN(q)
return isNaN(q:q1()) or isNaN(q:q2()) or isNaN(q:q3()) or isNaN(q:q4())
end
--[[
return the body y projection down, this is the c.y element of the equivalent rotation matrix
--]]
function quat_projection_ground_plane(q)
local q1q2 = q:q1() * q:q2()
local q3q4 = q:q3() * q:q4()
return 2.0 * (q3q4 + q1q2)
end
path_var.count = 0
function do_path()
local now = millis():tofloat() * 0.001
local ahrs_pos_NED = ahrs:get_relative_position_NED_origin()
local ahrs_pos = ahrs:get_position()
local ahrs_gyro = ahrs:get_gyro()
local ahrs_velned = ahrs:get_velocity_NED()
local ahrs_airspeed = ahrs:airspeed_estimate()
--[[
ahrs_quat is the quaterion which when used with quat_earth_to_body() rotates a vector
from earth to body frame. It needs to be the inverse of ahrs:get_quaternion()
--]]
local ahrs_quat = ahrs:get_quaternion():inverse()
path_var.count = path_var.count + 1
local target_dt = 1.0/LOOP_RATE
local path = current_task.fn
if not current_task.started then
local initial_yaw_deg = current_task.initial_yaw_deg
current_task.started = true
local speed = target_groundspeed()
path_var.target_speed = speed
path_var.length = path.get_length() * math.abs(AEROM_PATH_SCALE:get())
path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0)
--assuming constant velocity
path_var.total_time = path_var.length/speed
--deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation
path_var.initial_ori = Quaternion()
path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg))
path_var.initial_ori = path_var.initial_ori
path_var.initial_ori:normalize()
path_var.initial_ef_pos = ahrs_pos_NED:copy()
path_var.start_pos = ahrs_pos:copy()
path_var.path_int = path_var.start_pos:copy()
speed_PI.reset()
path_var.accumulated_orientation_rel_ef = path_var.initial_ori
path_var.time_correction = 0.0
path_var.filtered_angular_velocity = Vector3f()
path_var.last_time = now - 1.0/LOOP_RATE
path_var.sideslip_angle_rad = { 0.0, 0.0 }
path_var.ff_yaw_rate_rads = 0.0
path_var.last_q_change_t = 1.0 / LOOP_RATE
path_var.last_ang_rate_dps = ahrs_gyro:scale(math.deg(1))
path_var.path_t = 0.0
path_var.pos = path_var.initial_ef_pos:copy()
path_var.roll = 0.0
path_var.speed = nil
-- get initial tangent
local p1, r1, s1 = rotate_path(path, path_var.path_t + 0.1/(path_var.total_time*LOOP_RATE),
path_var.initial_ori, path_var.initial_ef_pos)
path_var.tangent = p1 - path_var.pos
return true
end
local vel_length = ahrs_velned:length()
local actual_dt = now - path_var.last_time
if actual_dt < 0.25 / LOOP_RATE then
-- the update has been executed too soon
return true
end
path_var.last_time = now
local local_n_dt = actual_dt/path_var.total_time
if path_var.path_t + local_n_dt > 1.0 then
-- all done
return false
end
-- airspeed, assume we don't go below min
local airspeed_constrained = math.max(ARSPD_FBW_MIN:get(), ahrs_airspeed)
--[[
calculate positions and angles at previous, current and next time steps
--]]
local p0 = path_var.pos:copy()
local r0 = path_var.roll
local s0 = path_var.speed
local p1, r1, s1 = rotate_path(path, path_var.path_t + local_n_dt,
path_var.initial_ori, path_var.initial_ef_pos)
local current_measured_pos_ef = ahrs_pos_NED:copy()
--[[
get tangents to the path
--]]
local tangent1_ef = path_var.tangent:copy()
local tangent2_ef = p1 - p0
local tv_unit = tangent2_ef:copy()
if tv_unit:length() < 0.00001 then
gcs:send_text(0, string.format("path not advancing %f", tv_unit:length()))
end
tv_unit:normalize()
--[[
use actual vehicle velocity to calculate how far along the
path we have progressed
--]]
local v = ahrs_velned:copy()
local path_dist = v:dot(tv_unit)*actual_dt
if path_dist < 0 then
gcs:send_text(0, string.format("aborting %.2f at %d tv=(%.2f,%.2f,%.2f) vx=%.2f adt=%.2f",
path_dist, path_var.count,
tangent2_ef:x(),
tangent2_ef:y(),
tangent2_ef:z(),
v:x(), actual_dt))
return false
end
local path_t_delta = constrain(path_dist/path_var.length, 0.2*local_n_dt, 4*local_n_dt)
--[[
recalculate the current path position and angle based on actual delta time
--]]
local p1, r1, s1, thr_boost = rotate_path(path,
constrain(path_var.path_t + path_t_delta, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
local last_path_t = path_var.path_t
path_var.path_t = path_var.path_t + path_t_delta
-- tangents needs to be recalculated
tangent2_ef = p1 - p0
tv_unit = tangent2_ef:copy()
tv_unit:normalize()
-- error in position versus current point on the path
local pos_error_ef = current_measured_pos_ef - p1
--[[
calculate a time correction. We first get the projection of
the position error onto the track. This tells us how far we
are ahead or behind on the track
--]]
local path_dist_err_m = tv_unit:dot(pos_error_ef)
-- normalize against the total path length
local path_err_t = path_dist_err_m / path_var.length
-- don't allow the path to go backwards in time, or faster than twice the actual rate
path_err_t = constrain(path_err_t, -0.9*path_t_delta, 2*path_t_delta)
-- correct time to bring us back into sync
path_var.path_t = path_var.path_t + TIME_CORR_P:get() * path_err_t
-- get the path again with the corrected time
p1, r1, s1 = rotate_path(path,
constrain(path_var.path_t, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
-- recalculate the tangent to match the amount we advanced the path time
tangent2_ef = p1 - p0
-- get the real world time corresponding to the quaternion change
local q_change_t = (path_var.path_t - last_path_t) * path_var.total_time
-- low pass filter the demanded roll angle
r1 = path_var.roll + wrap_pi(r1 - path_var.roll)
local alpha = calc_lowpass_alpha(q_change_t, AEROM_ANG_TC:get())
r1 = (1.0 - alpha) * path_var.roll + alpha * r1
r1 = wrap_pi(r1)
path_var.tangent = tangent2_ef:copy()
path_var.pos = p1:copy()
path_var.roll = r1
path_var.speed = s1
--[[
calculation of error correction, calculating acceleration
needed to bring us back on the path, and body rates in pitch and
yaw to achieve those accelerations
--]]
-- component of pos_err perpendicular to the current path tangent
local B = ortho_proj(pos_error_ef, tv_unit)
-- derivative of pos_err perpendicular to the current path tangent, assuming tangent is constant
local B_dot = ortho_proj(v, tv_unit)
-- gains for error correction.
local acc_err_ef = B:scale(ERR_CORR_P:get()) + B_dot:scale(ERR_CORR_D:get())
local acc_err_bf = quat_earth_to_body(ahrs_quat, acc_err_ef)
local TAS = constrain(ahrs:get_EAS2TAS()*airspeed_constrained, 3, 100)
local corr_rate_bf_y_rads = -acc_err_bf:z()/TAS
local corr_rate_bf_z_rads = acc_err_bf:y()/TAS
local cor_ang_vel_bf_rads = makeVector3f(0.0, corr_rate_bf_y_rads, corr_rate_bf_z_rads)
if Vec3IsNaN(cor_ang_vel_bf_rads) then
cor_ang_vel_bf_rads = makeVector3f(0,0,0)
end
local cor_ang_vel_bf_dps = cor_ang_vel_bf_rads:scale(math.deg(1))
if path_var.count < 2 then
cor_ang_vel_bf_dps = Vector3f()
end
--[[
work out body frame path rate, this is based on two adjacent tangents on the path
--]]
local path_rate_ef_rads = tangents_to_rate(tangent1_ef, tangent2_ef, actual_dt)
if Vec3IsNaN(path_rate_ef_rads) then
gcs:send_text(0,string.format("path_rate_ef_rads: NaN"))
path_rate_ef_rads = makeVector3f(0,0,0)
end
local path_rate_ef_dps = path_rate_ef_rads:scale(math.deg(1))
if path_var.count < 3 then
-- cope with small initial misalignment
path_rate_ef_dps:z(0)
end
local path_rate_bf_dps = quat_earth_to_body(ahrs_quat, path_rate_ef_dps)
-- set the path roll rate
path_rate_bf_dps:x(math.deg(wrap_pi(r1 - r0)/actual_dt))
--[[
calculate body frame roll rate to achieved the desired roll
angle relative to the maneuver path
--]]
local zero_roll_angle_delta = Quaternion()
zero_roll_angle_delta:from_angular_velocity(path_rate_ef_rads, actual_dt)
path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef
path_var.accumulated_orientation_rel_ef:normalize()
local mf_axis = quat_earth_to_body(path_var.accumulated_orientation_rel_ef, makeVector3f(1, 0, 0))
local orientation_rel_mf_with_roll_angle = Quaternion()
orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, r1)
orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef
--[[
calculate the error correction for the roll versus the desired roll
--]]
local roll_error = orientation_rel_ef_with_roll_angle * ahrs_quat
roll_error:normalize()
local err_axis_ef, err_angle_rad = to_axis_and_angle(roll_error)
local time_const_roll = ROLL_CORR_TC:get()
local err_angle_rate_ef_rads = err_axis_ef:scale(err_angle_rad/time_const_roll)
local err_angle_rate_bf_dps = quat_earth_to_body(ahrs_quat,err_angle_rate_ef_rads):scale(math.deg(1))
-- zero any non-roll components
err_angle_rate_bf_dps:y(0)
err_angle_rate_bf_dps:z(0)
--[[
implement lookahead for path rates
--]]
if AEROM_LKAHD:get() > 0 then
local lookahead = AEROM_LKAHD:get()
local lookahead_vt = lookahead / path_var.total_time
p2 = rotate_path(path,
constrain(path_var.path_t+lookahead_vt, 0, 1),
path_var.initial_ori, path_var.initial_ef_pos)
local tangent3_ef = p2 - p1
local lk_ef_rads = tangents_to_rate(tangent2_ef, tangent3_ef, 0.5*(lookahead+(1.0/LOOP_RATE)))
-- scale for airspeed
lk_ef_rads = lk_ef_rads:scale(sq(vel_length/path_var.target_speed))
local lookahead_bf_rads = quat_earth_to_body(ahrs_quat, lk_ef_rads)
local lookahead_bf_dps = lookahead_bf_rads:scale(math.deg(1))
logger.write('AELK','Py,Ly,Pz,Lz', 'ffff',
path_rate_bf_dps:y(),
lookahead_bf_dps:y(),
path_rate_bf_dps:z(),
lookahead_bf_dps:z())
path_rate_bf_dps:y(lookahead_bf_dps:y())
path_rate_bf_dps:z(lookahead_bf_dps:z())
end
--[[
calculate an additional yaw rate to get us to the right angle of sideslip for knifeedge
--]]
local g_force = (path_rate_ef_rads:cross(v)):scale(1.0/GRAVITY_MSS)
local specific_force_g_ef = g_force - makeVector3f(0,0,-1)
local specific_force_g_bf = quat_earth_to_body(orientation_rel_ef_with_roll_angle, specific_force_g_ef)
local airspeed_scaling = SCALING_SPEED:get()/airspeed_constrained
local sideslip_rad = specific_force_g_bf:y() * (airspeed_scaling*airspeed_scaling) * math.rad(AEROM_KE_ANG:get())
local ff_yaw_rate_rads1 = -(sideslip_rad - path_var.sideslip_angle_rad[2]) / q_change_t
local ff_yaw_rate_rads2 = -(path_var.sideslip_angle_rad[2] - path_var.sideslip_angle_rad[1]) / path_var.last_q_change_t
local ff_yaw_rate_rads = 0.5 * (ff_yaw_rate_rads1 + ff_yaw_rate_rads2)
if path_var.count <= 4 then
-- prevent an initialisation issue
ff_yaw_rate_rads = 0.0
end
ff_yaw_rate_rads = 0.8 * path_var.ff_yaw_rate_rads + 0.2 * ff_yaw_rate_rads
path_var.ff_yaw_rate_rads = ff_yaw_rate_rads
path_var.sideslip_angle_rad[1] = path_var.sideslip_angle_rad[2]
path_var.sideslip_angle_rad[2] = sideslip_rad
path_var.last_q_change_t = q_change_t
local sideslip_rate_bf_dps = makeVector3f(0, 0, ff_yaw_rate_rads):scale(math.deg(1))
--[[
total angular rate is sum of path rate, correction rate and roll correction rate
--]]
local tot_ang_vel_bf_dps = path_rate_bf_dps + cor_ang_vel_bf_dps + err_angle_rate_bf_dps + sideslip_rate_bf_dps
--[[
apply angular accel limit
--]]
local ang_rate_diff_dps = tot_ang_vel_bf_dps - path_var.last_ang_rate_dps
local max_delta_dps = AEROM_ANG_ACCEL:get() * actual_dt
local max_delta_yaw_dps = max_delta_dps
if AEROM_YAW_ACCEL:get() > 0 and
(AEROM_YAW_ACCEL:get() < AEROM_ANG_ACCEL:get() or AEROM_ANG_ACCEL:get() <= 0) then
max_delta_yaw_dps = AEROM_YAW_ACCEL:get() * actual_dt
end
if max_delta_dps > 0 then
ang_rate_diff_dps:x(constrain(ang_rate_diff_dps:x(), -max_delta_dps, max_delta_dps))
ang_rate_diff_dps:y(constrain(ang_rate_diff_dps:y(), -max_delta_dps, max_delta_dps))
end
if max_delta_yaw_dps > 0 then
ang_rate_diff_dps:z(constrain(ang_rate_diff_dps:z(), -max_delta_yaw_dps, max_delta_yaw_dps))
end
tot_ang_vel_bf_dps = path_var.last_ang_rate_dps + ang_rate_diff_dps
path_var.last_ang_rate_dps = tot_ang_vel_bf_dps
--[[
log POSM is pose-measured, POST is pose-track, POSB is pose-track without the roll
--]]
log_pose('POSM', current_measured_pos_ef, ahrs_quat:inverse())
log_pose('POST', p1, orientation_rel_ef_with_roll_angle)
logger.write('AETM', 'T,Terr,QCt,Adt','ffff',
path_var.path_t,
path_err_t,
q_change_t,
actual_dt)
logger.write('AERT','Cx,Cy,Cz,Px,Py,Pz,Ex,Tx,Ty,Tz,Perr,Aerr,Yff,SS', 'ffffffffffffff',
cor_ang_vel_bf_dps:x(), cor_ang_vel_bf_dps:y(), cor_ang_vel_bf_dps:z(),
path_rate_bf_dps:x(), path_rate_bf_dps:y(), path_rate_bf_dps:z(),
err_angle_rate_bf_dps:x(),
tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z(),
pos_error_ef:length(),
wrap_180(math.deg(err_angle_rad)),
math.deg(ff_yaw_rate_rads),
math.deg(sideslip_rad))
--log_pose('POSB', p1, path_var.accumulated_orientation_rel_ef)
--[[
run the throttle based speed controller
--]]
if s1 == nil then
s1 = path_var.target_speed
end
--[[
get the anticipated pitch at the throttle lookahead time
we use the maximum of the current path pitch and the anticipated pitch
--]]
local qchange = Quaternion()
qchange:from_angular_velocity(path_rate_ef_rads, AEROM_THR_LKAHD:get())
local qnew = qchange * orientation_rel_ef_with_roll_angle
local anticipated_pitch_rad = math.max(qnew:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_pitch())
local throttle = speed_PI.update(s1, anticipated_pitch_rad)
local thr_min = AEROM_THR_MIN:get()
if thr_boost then
thr_min = math.max(thr_min, AEROM_THR_BOOST:get())
end
throttle = constrain(throttle, thr_min, 100.0)
if isNaN(throttle) or Vec3IsNaN(tot_ang_vel_bf_dps) then
gcs:send_text(0,string.format("Path NaN - aborting"))
return false
end
vehicle:set_target_throttle_rate_rpy(throttle, tot_ang_vel_bf_dps:x(), tot_ang_vel_bf_dps:y(), tot_ang_vel_bf_dps:z())
if now - last_named_float_t > 1.0 / NAME_FLOAT_RATE then
last_named_float_t = now
gcs:send_named_float("PERR", pos_error_ef:length())
end
return true
end
--[[
an object defining a path
--]]
function PathFunction(fn, name)
local self = {}
self.fn = fn
self.name = name
return self
end
local command_table = {}
command_table[1] = PathFunction(figure_eight, "Figure Eight")
command_table[2] = PathFunction(loop, "Loop")
command_table[3] = PathFunction(horizontal_rectangle, "Horizontal Rectangle")
command_table[4] = PathFunction(climbing_circle, "Climbing Circle")
command_table[5] = PathFunction(vertical_aerobatic_box, "Vertical Box")
command_table[6] = PathFunction(immelmann_turn_fast, "Immelmann Fast")
command_table[7] = PathFunction(straight_roll, "Axial Roll")
command_table[8] = PathFunction(rolling_circle, "Rolling Circle")
command_table[9] = PathFunction(half_cuban_eight, "Half Cuban Eight")
command_table[10]= PathFunction(half_reverse_cuban_eight, "Half Reverse Cuban Eight")
command_table[11]= PathFunction(cuban_eight, "Cuban Eight")
command_table[12]= PathFunction(humpty_bump, "Humpty Bump")
command_table[13]= PathFunction(straight_flight, "Straight Flight")
command_table[14]= PathFunction(scale_figure_eight, "Scale Figure Eight")
command_table[15]= PathFunction(immelmann_turn, "Immelmann Turn")
command_table[16]= PathFunction(split_s, "Split-S")
command_table[17]= PathFunction(upline_45, "Upline-45")
command_table[18]= PathFunction(downline_45, "Downline-45")
command_table[19]= PathFunction(stall_turn, "Stall Turn")
command_table[20]= PathFunction(procedure_turn, "Procedure Turn")
command_table[21]= PathFunction(derry_turn, "Derry Turn")
command_table[22]= PathFunction(two_point_roll, "Two Point Roll")
command_table[23]= PathFunction(half_climbing_circle, "Half Climbing Circle")
command_table[24]= PathFunction(crossbox_humpty, "Crossbox Humpty")
command_table[25]= PathFunction(laydown_humpty, "Laydown Humpty")
command_table[26]= PathFunction(barrel_roll, "Barrel Roll")
command_table[27]= PathFunction(straight_flight, "Straight Hold")
command_table[28]= PathFunction(partial_circle, "Partial Circle")
command_table[29]= PathFunction(four_point_roll, "Four Point Roll")
command_table[30]= PathFunction(eight_point_roll, "Eight Point Roll")
command_table[31]= PathFunction(multi_point_roll, "Multi Point Roll")
command_table[32]= PathFunction(side_step, "Side Step")
command_table[200] = PathFunction(test_all_paths, "Test Suite")
command_table[201] = PathFunction(nz_clubman, "NZ Clubman")
command_table[202] = PathFunction(f3a_p23_l_r, "FAI F3A P23 L to R")
command_table[203] = PathFunction(f4c_example_l_r, "FAI F4C Example L to R")
command_table[204] = PathFunction(air_show1, "AirShow")
command_table[205] = PathFunction(fai_f3a_box_l_r, "FAI F3A Aerobatic Box Demonstration")
command_table[206] = PathFunction(air_show3, "AirShow3")
--[[
a table of function available in loadable tricks
--]]
local load_table = {}
load_table["loop"] = loop
load_table["horizontal_rectangle"] = horizontal_rectangle
load_table["climbing_circle"] = climbing_circle
load_table["vertical_aerobatic_box"] = vertical_aerobatic_box
load_table["immelmann_turn_fast"] = immelmann_turn_fast
load_table["straight_roll"] = straight_roll
load_table["rolling_circle"] = rolling_circle
load_table["half_cuban_eight"] = half_cuban_eight
load_table["half_reverse_cuban_eight"] = half_reverse_cuban_eight
load_table["cuban_eight"] = cuban_eight
load_table["humpty_bump"] = humpty_bump
load_table["straight_flight"] = straight_flight
load_table["scale_figure_eight"] = scale_figure_eight
load_table["immelmann_turn"] = immelmann_turn
load_table["split_s"] = split_s
load_table["upline_45"] = upline_45
load_table["downline_45"] = downline_45
load_table["stall_turn"] = stall_turn
load_table["procedure_turn"] = procedure_turn
load_table["derry_turn"] = derry_turn
load_table["two_point_roll"] = two_point_roll
load_table["half_climbing_circle"] = half_climbing_circle
load_table["crossbox_humpty"] = crossbox_humpty
load_table["laydown_humpty"] = laydown_humpty
load_table["straight_align"] = straight_align
load_table["figure_eight"] = figure_eight
load_table["barrel_roll"] = barrel_roll
load_table["straight_hold"] = straight_hold
load_table["partial_circle"] = partial_circle
load_table["multi_point_roll"] = multi_point_roll
load_table["side_step"] = side_step
load_table["p23_1a"] = p23_1a
load_table["p23_1"] = p23_1
load_table["p23_13a"] = p23_13a
load_table["p23_14"] = p23_14
load_table["p23_15"] = p23_15
load_table["p23_16"] = p23_16
load_table["p23_17"] = p23_17
--[[
load a trick description from a text file
--]]
function load_trick(id)
if command_table[id] ~= nil then
-- already have it
return
end
-- look in 3 possible locations for the trick, coping with SITL and real boards
local trickdirs = { "APM/scripts/", "scripts/", "./" }
local file = nil
local fname = string.format("trick%u.txt", id)
for i = 1, #trickdirs do
file = io.open(trickdirs[i] .. fname, "r")
if file then
break
end
end
if file == nil then
gcs:send_text(0,string.format("Failed to open %s", fname))
return
end
local name = string.format("Trick%u", id)
local paths = {}
local message = nil
while true do
local line = file:read()
if not line then
break
end
local _, _, cmd, arg1, arg2, arg3, arg4 = string.find(line, "^([%w_:]+)%s*([-.%d]*)%s*([-.%d]*)%s*([-.%d]*)%s*([-.%d]*)")
if cmd == "" or cmd == nil or string.sub(cmd,1,1) == "#" then
-- ignore comments
elseif cmd == "name:" then
_, _, name = string.find(line, "^name:%s*([%w_]+)$")
elseif cmd == "message:" then
_, _, message = string.find(line, "^message:%s*(.+)$")
elseif cmd ~= nil then
arg1 = tonumber(arg1) or 0
arg2 = tonumber(arg2) or 0
arg3 = tonumber(arg3) or 0
arg4 = tonumber(arg4) or 0
local f = load_table[cmd]
if f == nil then
gcs:send_text(0,string.format("Unknown command '%s' in %s", cmd, fname))
else
paths[#paths+1] = { f, { arg1, arg2, arg3, arg4 }}
if message ~= nil then
paths[#paths].message = message
message = nil
end
end
end
end
local pc = path_composer(name, paths)
gcs:send_text(0, string.format("Loaded trick%u '%s'", id, name))
command_table[id] = PathFunction(pc, name)
end
function PathTask(fn, name, id, initial_yaw_deg, arg1, arg2, arg3, arg4)
self = {}
if type(fn) == "table" then
self.fn = fn
else
self.fn = fn(arg1, arg2, arg3, arg4)
end
self.name = name
self.id = id
self.initial_yaw_deg = initial_yaw_deg
self.started = false
return self
end
-- see if an auto mission item needs to be run
function check_auto_mission()
id, cmd, arg1, arg2, arg3, arg4 = vehicle:nav_script_time()
if not id then
return
end
if id ~= last_id then
-- we've started a new command
current_task = nil
last_id = id
local initial_yaw_deg = get_ground_course_deg()
load_trick(cmd)
gcs:send_text(0, string.format("Starting %s!", command_table[cmd].name ))
-- work out yaw between previous WP and next WP
local cnum = mission:get_current_nav_index()
-- find previous nav waypoint
local loc_prev = get_wp_location(cnum-1)
local loc_next = get_wp_location(cnum+1)
local i= cnum-1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i-1
loc_prev = get_wp_location(i)
end
-- find next nav waypoint
i = cnum+1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i+1
loc_next = get_wp_location(resolve_jump(i))
end
local wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next))
if math.abs(wrap_180(initial_yaw_deg - wp_yaw_deg)) > 90 then
gcs:send_text(0, string.format("Doing turnaround!"))
wp_yaw_deg = wrap_180(wp_yaw_deg + 180)
end
initial_yaw_deg = wp_yaw_deg
current_task = PathTask(command_table[cmd].fn, command_table[cmd].name,
id, initial_yaw_deg, arg1, arg2, arg3, arg4)
end
end
local last_trick_action_state = 0
local trick_sel_chan = nil
local last_trick_selection = nil
--[[
get selected trick. Trick numbers are 1 .. TRIK_COUNT. A value of 0 is invalid
--]]
function get_trick_selection()
if trick_sel_chan == nil then
trick_sel_chan = rc:find_channel_for_option(TRIK_SEL_FN:get())
if trick_sel_chan == nil then
return 0
end
end
-- get trick selection based on selection channel input and number of tricks
local i = math.floor(TRIK_COUNT:get() * constrain(0.5*(trick_sel_chan:norm_input_ignore_trim()+1),0,0.999)+1)
if TRICKS[i] == nil then
return 0
end
return i
end
--[[
check for running a trick
--]]
function check_trick()
local selection = get_trick_selection()
local action = rc:get_aux_cached(TRIK_ACT_FN:get())
if action == 0 and current_task ~= nil then
gcs:send_text(0,string.format("Trick aborted"))
current_task = nil
last_trick_selection = nil
-- use invalid mode to disable script control
vehicle:nav_scripting_enable(255)
return
end
if selection == 0 then
return
end
if action == 1 and selection ~= last_trick_selection then
local id = TRICKS[selection].id:get()
load_trick(id)
if command_table[id] ~= nil then
local cmd = command_table[id]
gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name))
last_trick_selection = selection
return
end
end
if current_task ~= nil then
-- let the task finish
return
end
if action ~= last_trick_action_state then
last_trick_selection = selection
last_trick_action_state = action
if selection == 0 then
gcs:send_text(0, string.format("No trick selected"))
return
end
local id = TRICKS[selection].id:get()
load_trick(id)
if command_table[id] == nil then
gcs:send_text(0, string.format("Invalid trick ID %u", id))
return
end
local cmd = command_table[id]
if action == 1 then
gcs:send_text(0, string.format("Trick %u selected (%s)", selection, cmd.name))
end
if action == 2 then
last_trick_selection = nil
local current_mode = vehicle:get_mode()
if not vehicle:nav_scripting_enable(current_mode) then
gcs:send_text(0, string.format("Tricks not available in mode"))
return
end
gcs:send_text(0, string.format("Trick %u started (%s)", selection, cmd.name))
local initial_yaw_deg = get_ground_course_deg()
current_task = PathTask(cmd.fn,
cmd.name,
nil,
initial_yaw_deg,
TRICKS[selection].args[1]:get(),
TRICKS[selection].args[2]:get(),
TRICKS[selection].args[3]:get(),
TRICKS[selection].args[4]:get())
end
end
end
function update()
if vehicle:get_mode() == MODE_AUTO then
check_auto_mission()
elseif TRICKS ~= nil then
check_trick()
end
if current_task ~= nil then
if not do_path() then
gcs:send_text(0, string.format("Finishing %s!", current_task.name))
if current_task.id ~= nil then
vehicle:nav_script_time_done(current_task.id)
else
-- use invalid mode to disable script control
vehicle:nav_scripting_enable(255)
end
current_task = nil
end
end
return update, 1000.0/LOOP_RATE
end
return update()