Ardupilot2/libraries/AP_HAL/SIMState.cpp
Peter Barker 9087bb6b89 AP_HAL: track simulated ADSB vehicles relative to simulation origin
removes dependence on ArduPilot AHRS library

Also removes vehicles based off vehicle simulated position rather than distance-from-origin, so you always have company
2023-11-02 15:52:42 +11:00

397 lines
11 KiB
C++

#include "SIMState.h"
#if AP_SIM_ENABLED && CONFIG_HAL_BOARD != HAL_BOARD_SITL
/*
* This is a very-much-cut-down AP_HAL_SITL object. We should make
* PA_HAL_SITL use this object - by moving a lot more code from over
* there into here.
*/
#include <SITL/SIM_Multicopter.h>
#include <SITL/SIM_Helicopter.h>
#include <SITL/SIM_SingleCopter.h>
#include <SITL/SIM_Plane.h>
#include <SITL/SIM_QuadPlane.h>
#include <SITL/SIM_Rover.h>
#include <SITL/SIM_BalanceBot.h>
#include <SITL/SIM_Sailboat.h>
#include <SITL/SIM_MotorBoat.h>
#include <SITL/SIM_Tracker.h>
#include <SITL/SIM_Submarine.h>
#include <SITL/SIM_Blimp.h>
#include <AP_Vehicle/AP_Vehicle_Type.h>
#include <AP_Baro/AP_Baro.h>
extern const AP_HAL::HAL& hal;
using namespace AP_HAL;
#include <AP_Terrain/AP_Terrain.h>
#ifndef AP_SIM_FRAME_CLASS
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
#define AP_SIM_FRAME_CLASS MultiCopter
#elif APM_BUILD_TYPE(APM_BUILD_Heli)
#define AP_SIM_FRAME_CLASS Helicopter
#elif APM_BUILD_TYPE(APM_BUILD_ArduPlane)
#define AP_SIM_FRAME_CLASS Plane
#elif APM_BUILD_TYPE(APM_BUILD_Rover)
#define AP_SIM_FRAME_CLASS SimRover
#endif
#endif
#ifndef AP_SIM_FRAME_STRING
#if APM_BUILD_TYPE(APM_BUILD_ArduCopter)
#define AP_SIM_FRAME_STRING "+"
#elif APM_BUILD_TYPE(APM_BUILD_Heli)
#define AP_SIM_FRAME_STRING "heli"
#elif APM_BUILD_TYPE(APM_BUILD_ArduPlane)
#define AP_SIM_FRAME_STRING "plane"
#elif APM_BUILD_TYPE(APM_BUILD_Rover)
#define AP_SIM_FRAME_STRING "rover"
#endif
#endif
void SIMState::update()
{
static bool init_done;
if (!init_done) {
init_done = true;
sitl_model = SITL::AP_SIM_FRAME_CLASS::create(AP_SIM_FRAME_STRING);
}
_fdm_input_step();
}
/*
setup for SITL handling
*/
void SIMState::_sitl_setup(const char *home_str)
{
_home_str = home_str;
printf("Starting SITL input\n");
}
/*
step the FDM by one time step
*/
void SIMState::_fdm_input_step(void)
{
fdm_input_local();
}
/*
get FDM input from a local model
*/
void SIMState::fdm_input_local(void)
{
struct sitl_input input;
// construct servos structure for FDM
_simulator_servos(input);
// read servo inputs from ride along flight controllers
// ride_along.receive(input);
// update the model
sitl_model->update_home();
sitl_model->update_model(input);
// get FDM output from the model
if (_sitl == nullptr) {
_sitl = AP::sitl();
}
if (_sitl) {
sitl_model->fill_fdm(_sitl->state);
if (_sitl->rc_fail == SITL::SIM::SITL_RCFail_None) {
for (uint8_t i=0; i< _sitl->state.rcin_chan_count; i++) {
pwm_input[i] = 1000 + _sitl->state.rcin[i]*1000;
}
}
}
// output JSON state to ride along flight controllers
// ride_along.send(_sitl->state,sitl_model->get_position_relhome());
#if HAL_SIM_GIMBAL_ENABLED
if (gimbal != nullptr) {
gimbal->update();
}
#endif
#if HAL_SIM_ADSB_ENABLED
if (adsb != nullptr) {
adsb->update();
}
#endif
if (vicon != nullptr) {
Quaternion attitude;
sitl_model->get_attitude(attitude);
vicon->update(sitl_model->get_location(),
sitl_model->get_position_relhome(),
sitl_model->get_velocity_ef(),
attitude);
}
if (benewake_tf02 != nullptr) {
benewake_tf02->update(sitl_model->rangefinder_range());
}
if (benewake_tf03 != nullptr) {
benewake_tf03->update(sitl_model->rangefinder_range());
}
if (benewake_tfmini != nullptr) {
benewake_tfmini->update(sitl_model->rangefinder_range());
}
if (nooploop != nullptr) {
nooploop->update(sitl_model->rangefinder_range());
}
if (teraranger_serial != nullptr) {
teraranger_serial->update(sitl_model->rangefinder_range());
}
if (lightwareserial != nullptr) {
lightwareserial->update(sitl_model->rangefinder_range());
}
if (lightwareserial_binary != nullptr) {
lightwareserial_binary->update(sitl_model->rangefinder_range());
}
if (lanbao != nullptr) {
lanbao->update(sitl_model->rangefinder_range());
}
if (blping != nullptr) {
blping->update(sitl_model->rangefinder_range());
}
if (leddarone != nullptr) {
leddarone->update(sitl_model->rangefinder_range());
}
if (rds02uf != nullptr) {
rds02uf->update(sitl_model->rangefinder_range());
}
if (USD1_v0 != nullptr) {
USD1_v0->update(sitl_model->rangefinder_range());
}
if (USD1_v1 != nullptr) {
USD1_v1->update(sitl_model->rangefinder_range());
}
if (maxsonarseriallv != nullptr) {
maxsonarseriallv->update(sitl_model->rangefinder_range());
}
if (wasp != nullptr) {
wasp->update(sitl_model->rangefinder_range());
}
if (nmea != nullptr) {
nmea->update(sitl_model->rangefinder_range());
}
if (rf_mavlink != nullptr) {
rf_mavlink->update(sitl_model->rangefinder_range());
}
if (gyus42v2 != nullptr) {
gyus42v2->update(sitl_model->rangefinder_range());
}
if (efi_ms != nullptr) {
efi_ms->update();
}
if (frsky_d != nullptr) {
frsky_d->update();
}
#if AP_SIM_CRSF_ENABLED
if (crsf != nullptr) {
crsf->update();
}
#endif
#if HAL_SIM_PS_RPLIDARA2_ENABLED
if (rplidara2 != nullptr) {
rplidara2->update(sitl_model->get_location());
}
#endif
#if HAL_SIM_PS_TERARANGERTOWER_ENABLED
if (terarangertower != nullptr) {
terarangertower->update(sitl_model->get_location());
}
#endif
#if HAL_SIM_PS_LIGHTWARE_SF45B_ENABLED
if (sf45b != nullptr) {
sf45b->update(sitl_model->get_location());
}
#endif
if (vectornav != nullptr) {
vectornav->update();
}
if (microstrain5 != nullptr) {
microstrain5->update();
}
#if HAL_SIM_AIS_ENABLED
if (ais != nullptr) {
ais->update();
}
#endif
for (uint8_t i=0; i<ARRAY_SIZE(gps); i++) {
if (gps[i] != nullptr) {
gps[i]->update();
}
}
// update simulation time
if (_sitl) {
hal.scheduler->stop_clock(_sitl->state.timestamp_us);
} else {
hal.scheduler->stop_clock(AP_HAL::micros64()+100);
}
set_height_agl();
_synthetic_clock_mode = true;
_update_count++;
}
/*
create sitl_input structure for sending to FDM
*/
void SIMState::_simulator_servos(struct sitl_input &input)
{
// output at chosen framerate
uint32_t now = AP_HAL::micros();
// find the barometer object if it exists
const auto *_barometer = AP_Baro::get_singleton();
float altitude = _barometer?_barometer->get_altitude():0;
float wind_speed = 0;
float wind_direction = 0;
float wind_dir_z = 0;
// give 5 seconds to calibrate airspeed sensor at 0 wind speed
if (wind_start_delay_micros == 0) {
wind_start_delay_micros = now;
} else if (_sitl && (now - wind_start_delay_micros) > 5000000 ) {
// The EKF does not like step inputs so this LPF keeps it happy.
wind_speed = _sitl->wind_speed_active = (0.95f*_sitl->wind_speed_active) + (0.05f*_sitl->wind_speed);
wind_direction = _sitl->wind_direction_active = (0.95f*_sitl->wind_direction_active) + (0.05f*_sitl->wind_direction);
wind_dir_z = _sitl->wind_dir_z_active = (0.95f*_sitl->wind_dir_z_active) + (0.05f*_sitl->wind_dir_z);
// pass wind into simulators using different wind types via param SIM_WIND_T*.
switch (_sitl->wind_type) {
case SITL::SIM::WIND_TYPE_SQRT:
if (altitude < _sitl->wind_type_alt) {
wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0));
}
break;
case SITL::SIM::WIND_TYPE_COEF:
wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef;
break;
case SITL::SIM::WIND_TYPE_NO_LIMIT:
default:
break;
}
// never allow negative wind velocity
wind_speed = MAX(wind_speed, 0);
}
input.wind.speed = wind_speed;
input.wind.direction = wind_direction;
input.wind.turbulence = _sitl?_sitl->wind_turbulance:0;
input.wind.dir_z = wind_dir_z;
for (uint8_t i=0; i<SITL_NUM_CHANNELS; i++) {
if (pwm_output[i] == 0xFFFF) {
input.servos[i] = 0;
} else {
input.servos[i] = pwm_output[i];
}
}
if (_sitl != nullptr) {
// FETtec ESC simulation support. Input signals of 1000-2000
// are positive thrust, 0 to 1000 are negative thrust. Deeper
// changes required to support negative thrust - potentially
// adding a field to input.
if (_sitl != nullptr) {
if (_sitl->fetteconewireesc_sim.enabled()) {
_sitl->fetteconewireesc_sim.update_sitl_input_pwm(input);
for (uint8_t i=0; i<ARRAY_SIZE(input.servos); i++) {
if (input.servos[i] != 0 && input.servos[i] < 1000) {
AP_HAL::panic("Bad input servo value (%u)", input.servos[i]);
}
}
}
}
}
float voltage = 0;
_current = 0;
if (_sitl != nullptr) {
if (_sitl->state.battery_voltage <= 0) {
} else {
// FDM provides voltage and current
voltage = _sitl->state.battery_voltage;
_current = _sitl->state.battery_current;
}
}
// assume 3DR power brick
voltage_pin_value = ((voltage / 10.1f) / 5.0f) * 1024;
current_pin_value = ((_current / 17.0f) / 5.0f) * 1024;
// fake battery2 as just a 25% gain on the first one
voltage2_pin_value = ((voltage * 0.25f / 10.1f) / 5.0f) * 1024;
current2_pin_value = ((_current * 0.25f / 17.0f) / 5.0f) * 1024;
}
/*
set height above the ground in meters
*/
void SIMState::set_height_agl(void)
{
static float home_alt = -1;
if (!_sitl) {
// in example program
return;
}
if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) {
// remember home altitude as first non-zero altitude
home_alt = _sitl->state.altitude;
}
#if AP_TERRAIN_AVAILABLE
if (_sitl != nullptr &&
_sitl->terrain_enable) {
// get height above terrain from AP_Terrain. This assumes
// AP_Terrain is working
float terrain_height_amsl;
Location location;
location.lat = _sitl->state.latitude*1.0e7;
location.lng = _sitl->state.longitude*1.0e7;
AP_Terrain *_terrain = AP_Terrain::get_singleton();
if (_terrain != nullptr &&
_terrain->height_amsl(location, terrain_height_amsl)) {
_sitl->height_agl = _sitl->state.altitude - terrain_height_amsl;
return;
}
}
#endif
if (_sitl != nullptr) {
// fall back to flat earth model
_sitl->height_agl = _sitl->state.altitude - home_alt;
}
}
#endif // AP_SIM_ENABLED && CONFIG_HAL_BOARD != HAL_BOARD_SITL