Ardupilot2/libraries/AP_Baro/AP_Baro.cpp
Andrew Tridgell d404cc6542 AP_Baro: add set_external_temperature()
this allows the use of an external temperature sensor for calibration
purposes, such as the sensor built in to the digital airspeed sensor.

The main affect this has is on the EAS2TAS calculation

The get_calibration_temperature() is used to choose either an external
temperature or an internal one. If an internal one is used then it is
clamped at no higher than 25 degrees C, to prevent hot electronics
on startup affecting altitude scaling and EAS2TAS
2014-11-12 13:36:01 +11:00

254 lines
8.9 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* APM_Baro.cpp - barometer driver
*
*/
#include <AP_Math.h>
#include <AP_Common.h>
#include <AP_Baro.h>
#include <AP_HAL.h>
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Baro::var_info[] PROGMEM = {
// NOTE: Index numbers 0 and 1 were for the old integer
// ground temperature and pressure
// @Param: ABS_PRESS
// @DisplayName: Absolute Pressure
// @Description: calibrated ground pressure in Pascals
// @Units: pascals
// @Increment: 1
AP_GROUPINFO("ABS_PRESS", 2, AP_Baro, _ground_pressure, 0),
// @Param: TEMP
// @DisplayName: ground temperature
// @Description: calibrated ground temperature in degrees Celsius
// @Units: degrees celsius
// @Increment: 1
AP_GROUPINFO("TEMP", 3, AP_Baro, _ground_temperature, 0),
// @Param: ALT_OFFSET
// @DisplayName: altitude offset
// @Description: altitude offset in meters added to barometric altitude. This is used to allow for automatic adjustment of the base barometric altitude by a ground station equipped with a barometer. The value is added to the barometric altitude read by the aircraft. It is automatically reset to 0 when the barometer is calibrated on each reboot or when a preflight calibration is performed.
// @Units: meters
// @Range: -128 127
// @Increment: 1
AP_GROUPINFO("ALT_OFFSET", 4, AP_Baro, _alt_offset, 0),
AP_GROUPEND
};
// calibrate the barometer. This must be called at least once before
// the altitude() or climb_rate() interfaces can be used
void AP_Baro::calibrate()
{
float ground_pressure = 0;
float ground_temperature = 0;
// reset the altitude offset when we calibrate. The altitude
// offset is supposed to be for within a flight
_alt_offset.set_and_save(0);
{
uint32_t tstart = hal.scheduler->millis();
while (ground_pressure == 0 || !_flags.healthy) {
read(); // Get initial data from absolute pressure sensor
if (hal.scheduler->millis() - tstart > 500) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful "
"for more than 500ms in AP_Baro::calibrate [1]\r\n"));
}
ground_pressure = get_pressure();
ground_temperature = get_calibration_temperature();
hal.scheduler->delay(20);
}
}
// let the barometer settle for a full second after startup
// the MS5611 reads quite a long way off for the first second,
// leading to about 1m of error if we don't wait
for (uint8_t i = 0; i < 10; i++) {
uint32_t tstart = hal.scheduler->millis();
do {
read();
if (hal.scheduler->millis() - tstart > 500) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful "
"for more than 500ms in AP_Baro::calibrate [2]\r\n"));
}
} while (!_flags.healthy);
ground_pressure = get_pressure();
ground_temperature = get_calibration_temperature();
hal.scheduler->delay(100);
}
// now average over 5 values for the ground pressure and
// temperature settings
for (uint16_t i = 0; i < 5; i++) {
uint32_t tstart = hal.scheduler->millis();
do {
read();
if (hal.scheduler->millis() - tstart > 500) {
hal.scheduler->panic(PSTR("PANIC: AP_Baro::read unsuccessful "
"for more than 500ms in AP_Baro::calibrate [3]\r\n"));
}
} while (!_flags.healthy);
ground_pressure = (ground_pressure * 0.8f) + (get_pressure() * 0.2f);
ground_temperature = (ground_temperature * 0.8f) +
(get_calibration_temperature() * 0.2f);
hal.scheduler->delay(100);
}
_ground_pressure.set_and_save(ground_pressure);
_ground_temperature.set_and_save(ground_temperature);
}
/**
update the barometer calibration
this updates the baro ground calibration to the current values. It
can be used before arming to keep the baro well calibrated
*/
void AP_Baro::update_calibration()
{
float pressure = get_pressure();
_ground_pressure.set(pressure);
float last_temperature = _ground_temperature;
_ground_temperature.set(get_calibration_temperature());
if (fabsf(last_temperature - _ground_temperature) > 3) {
// reset _EAS2TAS to force it to recalculate. This happens
// when a digital airspeed sensor comes online
_EAS2TAS = 0;
}
}
// return altitude difference in meters between current pressure and a
// given base_pressure in Pascal
float AP_Baro::get_altitude_difference(float base_pressure, float pressure) const
{
float ret;
#if HAL_CPU_CLASS <= HAL_CPU_CLASS_16
// on slower CPUs use a less exact, but faster, calculation
float scaling = base_pressure / pressure;
float temp = _ground_temperature + 273.15f;
ret = logf(scaling) * temp * 29.271267f;
#else
// on faster CPUs use a more exact calculation
float scaling = pressure / base_pressure;
float temp = _ground_temperature + 273.15f;
// This is an exact calculation that is within +-2.5m of the standard atmosphere tables
// in the troposphere (up to 11,000 m amsl).
ret = 153.8462f * temp * (1.0f - expf(0.190259f * logf(scaling)));
#endif
return ret;
}
// return current altitude estimate relative to time that calibrate()
// was called. Returns altitude in meters
// note that this relies on read() being called regularly to get new data
float AP_Baro::get_altitude(void)
{
if (_ground_pressure == 0) {
// called before initialisation
return 0;
}
if (_last_altitude_t == _last_update) {
// no new information
return _altitude + _alt_offset;
}
float pressure = get_pressure();
float alt = get_altitude_difference(_ground_pressure, pressure);
// record that we have consumed latest data
_last_altitude_t = _last_update;
// sanity check altitude
if (isnan(alt) || isinf(alt)) {
_flags.alt_ok = false;
} else {
_altitude = alt;
_flags.alt_ok = true;
}
// ensure the climb rate filter is updated
_climb_rate_filter.update(_altitude, _last_update);
return _altitude + _alt_offset;
}
// return current scale factor that converts from equivalent to true airspeed
// valid for altitudes up to 10km AMSL
// assumes standard atmosphere lapse rate
float AP_Baro::get_EAS2TAS(void)
{
if ((fabsf(_altitude - _last_altitude_EAS2TAS) < 100.0f) && (_EAS2TAS != 0.0f)) {
// not enough change to require re-calculating
return _EAS2TAS;
}
float tempK = ((float)_ground_temperature) + 273.15f - 0.0065f * _altitude;
_EAS2TAS = safe_sqrt(1.225f / ((float)get_pressure() / (287.26f * tempK)));
_last_altitude_EAS2TAS = _altitude;
return _EAS2TAS;
}
// return current climb_rate estimeate relative to time that calibrate()
// was called. Returns climb rate in meters/s, positive means up
// note that this relies on read() being called regularly to get new data
float AP_Baro::get_climb_rate(void)
{
// we use a 7 point derivative filter on the climb rate. This seems
// to produce somewhat reasonable results on real hardware
return _climb_rate_filter.slope() * 1.0e3f;
}
/*
set external temperature to be used for calibration (degrees C)
*/
void AP_Baro::set_external_temperature(float temperature)
{
_external_temperature = temperature;
_last_external_temperature_ms = hal.scheduler->millis();
}
/*
get the temperature in degrees C to be used for calibration purposes
*/
float AP_Baro::get_calibration_temperature(void) const
{
// if we have a recent external temperature then use it
if (_last_external_temperature_ms != 0 && hal.scheduler->millis() - _last_external_temperature_ms < 10000) {
return _external_temperature;
}
// if we don't have an external temperature then use the minimum
// of the barometer temperature and 25 degrees C. The reason for
// not just using the baro temperature is it tends to read high,
// often 30 degrees above the actual temperature. That means the
// EAS2TAS tends to be off by quite a large margin
float ret = get_temperature();
if (ret > 25) {
ret = 25;
}
return ret;
}