162 lines
6.5 KiB
C++
162 lines
6.5 KiB
C++
#include "AP_Mount_Backend.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
// set_angle_targets - sets angle targets in degrees
|
|
void AP_Mount_Backend::set_angle_targets(float roll, float tilt, float pan)
|
|
{
|
|
// set angle targets
|
|
_angle_ef_target_rad.x = radians(roll);
|
|
_angle_ef_target_rad.y = radians(tilt);
|
|
_angle_ef_target_rad.z = radians(pan);
|
|
|
|
// set the mode to mavlink targeting
|
|
_frontend.set_mode(_instance, MAV_MOUNT_MODE_MAVLINK_TARGETING);
|
|
}
|
|
|
|
// set_roi_target - sets target location that mount should attempt to point towards
|
|
void AP_Mount_Backend::set_roi_target(const struct Location &target_loc)
|
|
{
|
|
// set the target gps location
|
|
_state._roi_target = target_loc;
|
|
|
|
// set the mode to GPS tracking mode
|
|
_frontend.set_mode(_instance, MAV_MOUNT_MODE_GPS_POINT);
|
|
}
|
|
|
|
// process MOUNT_CONFIGURE messages received from GCS. deprecated.
|
|
void AP_Mount_Backend::handle_mount_configure(const mavlink_mount_configure_t &packet)
|
|
{
|
|
set_mode((MAV_MOUNT_MODE)packet.mount_mode);
|
|
_state._stab_roll = packet.stab_roll;
|
|
_state._stab_tilt = packet.stab_pitch;
|
|
_state._stab_pan = packet.stab_yaw;
|
|
}
|
|
|
|
// process MOUNT_CONTROL messages received from GCS. deprecated.
|
|
void AP_Mount_Backend::handle_mount_control(const mavlink_mount_control_t &packet)
|
|
{
|
|
control((int32_t)packet.input_a, (int32_t)packet.input_b, (int32_t)packet.input_c, _state._mode);
|
|
}
|
|
|
|
void AP_Mount_Backend::control(int32_t pitch_or_lat, int32_t roll_or_lon, int32_t yaw_or_alt, MAV_MOUNT_MODE mount_mode)
|
|
{
|
|
_frontend.set_mode(_instance, mount_mode);
|
|
|
|
// interpret message fields based on mode
|
|
switch (_frontend.get_mode(_instance)) {
|
|
case MAV_MOUNT_MODE_RETRACT:
|
|
case MAV_MOUNT_MODE_NEUTRAL:
|
|
// do nothing with request if mount is retracted or in neutral position
|
|
break;
|
|
|
|
// set earth frame target angles from mavlink message
|
|
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
|
|
set_angle_targets(roll_or_lon*0.01f, pitch_or_lat*0.01f, yaw_or_alt*0.01f);
|
|
break;
|
|
|
|
// Load neutral position and start RC Roll,Pitch,Yaw control with stabilization
|
|
case MAV_MOUNT_MODE_RC_TARGETING:
|
|
// do nothing if pilot is controlling the roll, pitch and yaw
|
|
break;
|
|
|
|
// set lat, lon, alt position targets from mavlink message
|
|
case MAV_MOUNT_MODE_GPS_POINT:
|
|
Location target_location;
|
|
memset(&target_location, 0, sizeof(target_location));
|
|
target_location.lat = pitch_or_lat;
|
|
target_location.lng = roll_or_lon;
|
|
target_location.alt = yaw_or_alt;
|
|
target_location.flags.relative_alt = true;
|
|
set_roi_target(target_location);
|
|
break;
|
|
|
|
default:
|
|
// do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
void AP_Mount_Backend::rate_input_rad(float &out, const RC_Channel *chan, float min, float max) const
|
|
{
|
|
if ((chan == nullptr) || (chan->get_radio_in() == 0)) {
|
|
return;
|
|
}
|
|
out += chan->norm_input_dz() * 0.0001f * _frontend._joystick_speed;
|
|
out = constrain_float(out, radians(min*0.01f), radians(max*0.01f));
|
|
}
|
|
|
|
// update_targets_from_rc - updates angle targets using input from receiver
|
|
void AP_Mount_Backend::update_targets_from_rc()
|
|
{
|
|
const RC_Channel *roll_ch = rc().channel(_state._roll_rc_in - 1);
|
|
const RC_Channel *tilt_ch = rc().channel(_state._tilt_rc_in - 1);
|
|
const RC_Channel *pan_ch = rc().channel(_state._pan_rc_in - 1);
|
|
|
|
// if joystick_speed is defined then pilot input defines a rate of change of the angle
|
|
if (_frontend._joystick_speed) {
|
|
// allow pilot position input to come directly from an RC_Channel
|
|
rate_input_rad(_angle_ef_target_rad.x,
|
|
roll_ch,
|
|
_state._roll_angle_min,
|
|
_state._roll_angle_max);
|
|
rate_input_rad(_angle_ef_target_rad.y,
|
|
tilt_ch,
|
|
_state._tilt_angle_min,
|
|
_state._tilt_angle_max);
|
|
rate_input_rad(_angle_ef_target_rad.z,
|
|
pan_ch,
|
|
_state._pan_angle_min,
|
|
_state._pan_angle_max);
|
|
} else {
|
|
// allow pilot rate input to come directly from an RC_Channel
|
|
if ((roll_ch != nullptr) && (roll_ch->get_radio_in() != 0)) {
|
|
_angle_ef_target_rad.x = angle_input_rad(roll_ch, _state._roll_angle_min, _state._roll_angle_max);
|
|
}
|
|
if ((tilt_ch != nullptr) && (tilt_ch->get_radio_in() != 0)) {
|
|
_angle_ef_target_rad.y = angle_input_rad(tilt_ch, _state._tilt_angle_min, _state._tilt_angle_max);
|
|
}
|
|
if ((pan_ch != nullptr) && (pan_ch->get_radio_in() != 0)) {
|
|
_angle_ef_target_rad.z = angle_input_rad(pan_ch, _state._pan_angle_min, _state._pan_angle_max);
|
|
}
|
|
}
|
|
}
|
|
|
|
// returns the angle (degrees*100) that the RC_Channel input is receiving
|
|
int32_t AP_Mount_Backend::angle_input(const RC_Channel* rc, int16_t angle_min, int16_t angle_max)
|
|
{
|
|
return (rc->norm_input() + 1.0f) * 0.5f * (angle_max - angle_min) + angle_min;
|
|
}
|
|
|
|
// returns the angle (radians) that the RC_Channel input is receiving
|
|
float AP_Mount_Backend::angle_input_rad(const RC_Channel* rc, int16_t angle_min, int16_t angle_max)
|
|
{
|
|
return radians(angle_input(rc, angle_min, angle_max)*0.01f);
|
|
}
|
|
|
|
// calc_angle_to_location - calculates the earth-frame roll, tilt and pan angles (and radians) to point at the given target
|
|
void AP_Mount_Backend::calc_angle_to_location(const struct Location &target, Vector3f& angles_to_target_rad, bool calc_tilt, bool calc_pan, bool relative_pan)
|
|
{
|
|
float GPS_vector_x = (target.lng-_frontend._current_loc.lng)*cosf(ToRad((_frontend._current_loc.lat+target.lat)*0.00000005f))*0.01113195f;
|
|
float GPS_vector_y = (target.lat-_frontend._current_loc.lat)*0.01113195f;
|
|
float GPS_vector_z = (target.alt-_frontend._current_loc.alt); // baro altitude(IN CM) should be adjusted to known home elevation before take off (Set altimeter).
|
|
float target_distance = 100.0f*norm(GPS_vector_x, GPS_vector_y); // Careful , centimeters here locally. Baro/alt is in cm, lat/lon is in meters.
|
|
|
|
// initialise all angles to zero
|
|
angles_to_target_rad.zero();
|
|
|
|
// tilt calcs
|
|
if (calc_tilt) {
|
|
angles_to_target_rad.y = atan2f(GPS_vector_z, target_distance);
|
|
}
|
|
|
|
// pan calcs
|
|
if (calc_pan) {
|
|
// calc absolute heading and then onvert to vehicle relative yaw
|
|
angles_to_target_rad.z = atan2f(GPS_vector_x, GPS_vector_y);
|
|
if (relative_pan) {
|
|
angles_to_target_rad.z = wrap_PI(angles_to_target_rad.z - AP::ahrs().yaw);
|
|
}
|
|
}
|
|
}
|