Ardupilot2/libraries/AP_HAL_SITL/HAL_SITL_Class.cpp
Thomas Watson 3c82ac6043 AP_HAL_SITL: introduce get_HAL_mutable() to complement get_HAL()
Returns a mutable reference to the same HAL for certain purposes where
the HAL needs to be mutated to avoid UB problems with casting away const
and to make the fact that mutation is happening obvious.
2023-11-28 08:24:25 +11:00

313 lines
8.3 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <assert.h>
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include "AP_HAL_SITL.h"
#include "AP_HAL_SITL_Namespace.h"
#include "HAL_SITL_Class.h"
#include "Scheduler.h"
#include "AnalogIn.h"
#include "UARTDriver.h"
#include "I2CDevice.h"
#include "Storage.h"
#include "RCInput.h"
#include "RCOutput.h"
#include "GPIO.h"
#include "SITL_State.h"
#include "Util.h"
#include "DSP.h"
#include "CANSocketIface.h"
#include "SPIDevice.h"
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_HAL_Empty/AP_HAL_Empty.h>
#include <AP_HAL_Empty/AP_HAL_Empty_Private.h>
#include <AP_InternalError/AP_InternalError.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_RCProtocol/AP_RCProtocol_config.h>
using namespace HALSITL;
HAL_SITL& hal_sitl = (HAL_SITL&)AP_HAL::get_HAL_mutable();
static Storage sitlStorage;
static SITL_State sitlState;
static Scheduler sitlScheduler(&sitlState);
#if AP_RCPROTOCOL_ENABLED
static RCInput sitlRCInput(&sitlState);
#else
static Empty::RCInput sitlRCInput;
#endif
static RCOutput sitlRCOutput(&sitlState);
static GPIO sitlGPIO(&sitlState);
static AnalogIn sitlAnalogIn(&sitlState);
static DSP dspDriver;
// use the Empty HAL for hardware we don't emulate
static Empty::OpticalFlow emptyOpticalFlow;
static Empty::Flash emptyFlash;
static UARTDriver sitlUart0Driver(0, &sitlState);
static UARTDriver sitlUart1Driver(1, &sitlState);
static UARTDriver sitlUart2Driver(2, &sitlState);
static UARTDriver sitlUart3Driver(3, &sitlState);
static UARTDriver sitlUart4Driver(4, &sitlState);
static UARTDriver sitlUart5Driver(5, &sitlState);
static UARTDriver sitlUart6Driver(6, &sitlState);
static UARTDriver sitlUart7Driver(7, &sitlState);
static UARTDriver sitlUart8Driver(8, &sitlState);
static UARTDriver sitlUart9Driver(9, &sitlState);
static I2CDeviceManager i2c_mgr_instance;
#if defined(HAL_BUILD_AP_PERIPH)
static Empty::SPIDeviceManager spi_mgr_instance;
#else
static SPIDeviceManager spi_mgr_instance;
#endif
static Util utilInstance(&sitlState);
#if HAL_NUM_CAN_IFACES
static HALSITL::CANIface* canDrivers[HAL_NUM_CAN_IFACES];
#endif
static Empty::WSPIDeviceManager wspi_mgr_instance;
HAL_SITL::HAL_SITL() :
AP_HAL::HAL(
&sitlUart0Driver, /* uartA */
&sitlUart1Driver, /* uartB */
&sitlUart2Driver, /* uartC */
&sitlUart3Driver, /* uartD */
&sitlUart4Driver, /* uartE */
&sitlUart5Driver, /* uartF */
&sitlUart6Driver, /* uartG */
&sitlUart7Driver, /* uartH */
&sitlUart8Driver, /* uartI */
&sitlUart9Driver, /* uartJ */
&i2c_mgr_instance,
&spi_mgr_instance, /* spi */
&wspi_mgr_instance,
&sitlAnalogIn, /* analogin */
&sitlStorage, /* storage */
&sitlUart0Driver, /* console */
&sitlGPIO, /* gpio */
&sitlRCInput, /* rcinput */
&sitlRCOutput, /* rcoutput */
&sitlScheduler, /* scheduler */
&utilInstance, /* util */
&emptyOpticalFlow, /* onboard optical flow */
&emptyFlash, /* flash driver */
&dspDriver, /* dsp driver */
#if HAL_NUM_CAN_IFACES
(AP_HAL::CANIface**)canDrivers
#else
nullptr
#endif
), /* CAN */
_sitl_state(&sitlState)
{}
static char *new_argv[100];
/*
save watchdog data
*/
static bool watchdog_save(const uint32_t *data, uint32_t nwords)
{
int fd = ::open("persistent.dat", O_WRONLY|O_CREAT|O_TRUNC, 0644);
bool ret = false;
if (fd != -1) {
if (::write(fd, data, nwords*4) == (ssize_t)(nwords*4)) {
ret = true;
}
::close(fd);
}
return ret;
}
/*
load watchdog data
*/
static bool watchdog_load(uint32_t *data, uint32_t nwords)
{
int fd = ::open("persistent.dat", O_RDONLY, 0644);
bool ret = false;
if (fd != -1) {
ret = (::read(fd, data, nwords*4) == (ssize_t)(nwords*4));
::close(fd);
}
return ret;
}
/*
implement watchdoh reset via SIGALRM
*/
static void sig_alrm(int signum)
{
static char env[] = "SITL_WATCHDOG_RESET=1";
putenv(env);
printf("GOT SIGALRM\n");
execv(new_argv[0], new_argv);
}
void HAL_SITL::exit_signal_handler(int signum)
{
HALSITL::Scheduler::_should_exit = true;
}
void HAL_SITL::setup_signal_handlers() const
{
struct sigaction sa = { };
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = HAL_SITL::exit_signal_handler;
sigaction(SIGTERM, &sa, NULL);
#if defined(HAL_COVERAGE_BUILD) && HAL_COVERAGE_BUILD == 1
sigaction(SIGINT, &sa, NULL);
sigaction(SIGHUP, &sa, NULL);
sigaction(SIGQUIT, &sa, NULL);
#endif
}
/*
fill 8k of stack with NaN. This allows us to find uses of
uninitialised memory without valgrind
*/
static void fill_stack_nan(void)
{
float stk[2048];
fill_nanf(stk, ARRAY_SIZE(stk));
}
uint8_t HAL_SITL::get_instance() const
{
return _sitl_state->get_instance();
}
#if defined(HAL_BUILD_AP_PERIPH)
bool HAL_SITL::run_in_maintenance_mode() const
{
return _sitl_state->run_in_maintenance_mode();
}
#endif
void HAL_SITL::run(int argc, char * const argv[], Callbacks* callbacks) const
{
assert(callbacks);
utilInstance.init(argc, argv);
_sitl_state->init(argc, argv);
scheduler->init();
serial(0)->begin(115200);
rcin->init();
rcout->init();
// spi->init();
analogin->init();
if (getenv("SITL_WATCHDOG_RESET")) {
INTERNAL_ERROR(AP_InternalError::error_t::watchdog_reset);
if (watchdog_load((uint32_t *)&utilInstance.persistent_data, (sizeof(utilInstance.persistent_data)+3)/4)) {
serial(0)->printf("Loaded watchdog data");
utilInstance.last_persistent_data = utilInstance.persistent_data;
}
}
// form a new argv, removing problem parameters. This is used for reboot
uint8_t new_argv_offset = 0;
for (uint8_t i=0; i<ARRAY_SIZE(new_argv) && i<argc; i++) {
if (!strcmp(argv[i], "-w")) {
// don't wipe params on reboot
continue;
}
new_argv[new_argv_offset++] = argv[i];
}
fill_stack_nan();
callbacks->setup();
scheduler->set_system_initialized();
#if HAL_LOGGING_ENABLED
if (getenv("SITL_WATCHDOG_RESET")) {
const AP_HAL::Util::PersistentData &pd = util->persistent_data;
AP::logger().WriteCritical("WDOG", "TimeUS,Task,IErr,IErrCnt,IErrLn,MavMsg,MavCmd,SemLine", "QbIHHHHH",
AP_HAL::micros64(),
pd.scheduler_task,
pd.internal_errors,
pd.internal_error_count,
pd.internal_error_last_line,
pd.last_mavlink_msgid,
pd.last_mavlink_cmd,
pd.semaphore_line);
}
#endif
bool using_watchdog = AP_BoardConfig::watchdog_enabled();
if (using_watchdog) {
signal(SIGALRM, sig_alrm);
alarm(2);
}
setup_signal_handlers();
uint32_t last_watchdog_save = AP_HAL::millis();
uint8_t fill_count = 0;
while (true) {
if (HALSITL::Scheduler::_should_exit) {
::fprintf(stderr, "Exitting\n");
exit(0);
}
if (fill_count++ % 10 == 0) {
// only fill every 10 loops. This still gives us a lot of
// protection, but saves a lot of CPU
fill_count = 1u;
fill_stack_nan();
}
callbacks->loop();
HALSITL::Scheduler::_run_io_procs();
uint32_t now = AP_HAL::millis();
if (now - last_watchdog_save >= 100 && using_watchdog) {
// save persistent data every 100ms
last_watchdog_save = now;
watchdog_save((uint32_t *)&utilInstance.persistent_data, (sizeof(utilInstance.persistent_data)+3)/4);
}
if (using_watchdog) {
// note that this only works for a speedup of 1
alarm(2);
}
}
actually_reboot();
}
void HAL_SITL::actually_reboot()
{
execv(new_argv[0], new_argv);
AP_HAL::panic("PANIC: REBOOT FAILED: %s", strerror(errno));
}
static HAL_SITL hal_sitl_inst;
const AP_HAL::HAL& AP_HAL::get_HAL() {
return hal_sitl_inst;
}
AP_HAL::HAL& AP_HAL::get_HAL_mutable() {
return hal_sitl_inst;
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_SITL