Ardupilot2/libraries/AP_NavEKF3/AP_NavEKF3_Outputs.cpp
Paul Riseborough 410b5825fb AP_NavEKF3: Enable use of EKF-GSF yaw estimate
AP_NavEKF3: Add emergency yaw reset using a Gussian Sum Filter estimate

AP_NavEKF3: Reduce default minimum GPS velocity noise for Copters

Enables fail-safe to be set with more sensitivity and improves tracking accuracy.
Origin values were set using typical GPS performance for receivers on sale 6 years ago. Receiver performance has improved since then.

AP_NavEKF3: Prevent constant mag anomaly yaw resets

Prevents constant magnetic anomaly induced resets that can be triggered when flying with vehicle generated magnetic interference.
Allows for two resets per takeoff. Allowance for two resets is required, becasue a large ground based magnetic yaw anomaly can cause a sufficiently large yaw innovation that two resets in close succession are required.

AP_NavEKF3: Add option to fly without magnetometer

AP_NavEKF3: Rework emergency yaw reset logic

Use a separate external accessor function to request the yaw reset.
Allow reset requests to remain active for a defined period of time.
Tidy up reset function to split out accuracy check.

AP_NavEKF3: Fix vulnerability to lane switch race condition

Prevents the situation where a lane switch results in a lane being selected that does not have the correct yaw. This can occur if the primary lane becomes unhealthy before the external failsafe monitor has time to react.

AP_NavEKF3: Fix EKF_MAG_CAL = 6 behaviours

Fix bug causing the yaw alignment to be performed at startup before the GSF had a valid estimate.
Fix bug causing emergency yaw message to be output for a normal reset.
Fix vulnerability to reported negative yaw variance.
Remove duplicate timer checks.

AP_NavEKF3: Update EK3_MAG_CAL documentation

AP_NavEKF3: Relax yaw gyro bias convergence check when not using mag

AP_NavEKF3: Reduce yaw drift in hover with no yaw sensor

Uses the GSF yaw estimate if available which is better than the EKF's own yaw when no yaw sensor is available.
2020-04-24 09:43:22 +10:00

647 lines
25 KiB
C++

#include <AP_HAL/AP_HAL.h>
#include "AP_NavEKF3.h"
#include "AP_NavEKF3_core.h"
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Vehicle/AP_Vehicle.h>
#include <AP_GPS/AP_GPS.h>
#include <AP_RangeFinder/AP_RangeFinder.h>
extern const AP_HAL::HAL& hal;
// Check basic filter health metrics and return a consolidated health status
bool NavEKF3_core::healthy(void) const
{
uint16_t faultInt;
getFilterFaults(faultInt);
if (faultInt > 0) {
return false;
}
if (velTestRatio > 1 && posTestRatio > 1 && hgtTestRatio > 1) {
// all three metrics being above 1 means the filter is
// extremely unhealthy.
return false;
}
// Give the filter a second to settle before use
if ((imuSampleTime_ms - ekfStartTime_ms) < 1000 ) {
return false;
}
// position and height innovations must be within limits when on-ground and in a static mode of operation
float horizErrSq = sq(innovVelPos[3]) + sq(innovVelPos[4]);
if (onGround && (PV_AidingMode == AID_NONE) && ((horizErrSq > 1.0f) || (fabsf(hgtInnovFiltState) > 1.0f))) {
return false;
}
// all OK
return true;
}
// Return a consolidated error score where higher numbers represent larger errors
// Intended to be used by the front-end to determine which is the primary EKF
float NavEKF3_core::errorScore() const
{
float score = 0.0f;
if (tiltAlignComplete && yawAlignComplete) {
// Check GPS fusion performance
score = MAX(score, 0.5f * (velTestRatio + posTestRatio));
// Check altimeter fusion performance
score = MAX(score, hgtTestRatio);
}
return score;
}
// return data for debugging optical flow fusion
void NavEKF3_core::getFlowDebug(float &varFlow, float &gndOffset, float &flowInnovX, float &flowInnovY, float &auxInnov, float &HAGL, float &rngInnov, float &range, float &gndOffsetErr) const
{
varFlow = MAX(flowTestRatio[0],flowTestRatio[1]);
gndOffset = terrainState;
flowInnovX = innovOptFlow[0];
flowInnovY = innovOptFlow[1];
auxInnov = norm(auxFlowObsInnov.x,auxFlowObsInnov.y);
HAGL = terrainState - stateStruct.position.z;
rngInnov = innovRng;
range = rangeDataDelayed.rng;
gndOffsetErr = sqrtf(Popt); // note Popt is constrained to be non-negative in EstimateTerrainOffset()
}
// return data for debugging body frame odometry fusion
uint32_t NavEKF3_core::getBodyFrameOdomDebug(Vector3f &velInnov, Vector3f &velInnovVar)
{
velInnov.x = innovBodyVel[0];
velInnov.y = innovBodyVel[1];
velInnov.z = innovBodyVel[2];
velInnovVar.x = varInnovBodyVel[0];
velInnovVar.y = varInnovBodyVel[1];
velInnovVar.z = varInnovBodyVel[2];
return MAX(bodyOdmDataDelayed.time_ms,wheelOdmDataDelayed.time_ms);
}
// return data for debugging range beacon fusion one beacon at a time, incrementing the beacon index after each call
bool NavEKF3_core::getRangeBeaconDebug(uint8_t &ID, float &rng, float &innov, float &innovVar, float &testRatio, Vector3f &beaconPosNED,
float &offsetHigh, float &offsetLow, Vector3f &posNED)
{
// if the states have not been initialised or we have not received any beacon updates then return zeros
if (!statesInitialised || N_beacons == 0) {
return false;
}
// Ensure that beacons are not skipped due to calling this function at a rate lower than the updates
if (rngBcnFuseDataReportIndex >= N_beacons) {
rngBcnFuseDataReportIndex = 0;
}
// Output the fusion status data for the specified beacon
ID = rngBcnFuseDataReportIndex; // beacon identifier
rng = rngBcnFusionReport[rngBcnFuseDataReportIndex].rng; // measured range to beacon (m)
innov = rngBcnFusionReport[rngBcnFuseDataReportIndex].innov; // range innovation (m)
innovVar = rngBcnFusionReport[rngBcnFuseDataReportIndex].innovVar; // innovation variance (m^2)
testRatio = rngBcnFusionReport[rngBcnFuseDataReportIndex].testRatio; // innovation consistency test ratio
beaconPosNED = rngBcnFusionReport[rngBcnFuseDataReportIndex].beaconPosNED; // beacon receiver NED position (m)
offsetHigh = bcnPosDownOffsetMax; // beacon system vertical pos offset upper estimate (m)
offsetLow = bcnPosDownOffsetMin; // beacon system vertical pos offset lower estimate (m)
posNED = receiverPos; // beacon system NED offset (m)
rngBcnFuseDataReportIndex++;
return true;
}
// provides the height limit to be observed by the control loops
// returns false if no height limiting is required
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
bool NavEKF3_core::getHeightControlLimit(float &height) const
{
// only ask for limiting if we are doing optical flow navigation
if (frontend->_fusionModeGPS == 3) {
// If are doing optical flow nav, ensure the height above ground is within range finder limits after accounting for vehicle tilt and control errors
const RangeFinder *_rng = AP::rangefinder();
if (_rng == nullptr) {
// we really, really shouldn't be here.
return false;
}
height = MAX(float(_rng->max_distance_cm_orient(ROTATION_PITCH_270)) * 0.007f - 1.0f, 1.0f);
// If we are are not using the range finder as the height reference, then compensate for the difference between terrain and EKF origin
if (frontend->_altSource != 1) {
height -= terrainState;
}
return true;
} else {
return false;
}
}
// return the Euler roll, pitch and yaw angle in radians
void NavEKF3_core::getEulerAngles(Vector3f &euler) const
{
outputDataNew.quat.to_euler(euler.x, euler.y, euler.z);
euler = euler - _ahrs->get_trim();
}
// return body axis gyro bias estimates in rad/sec
void NavEKF3_core::getGyroBias(Vector3f &gyroBias) const
{
if (dtEkfAvg < 1e-6f) {
gyroBias.zero();
return;
}
gyroBias = stateStruct.gyro_bias / dtEkfAvg;
}
// return accelerometer bias in m/s/s
void NavEKF3_core::getAccelBias(Vector3f &accelBias) const
{
if (!statesInitialised) {
accelBias.zero();
return;
}
accelBias = stateStruct.accel_bias / dtEkfAvg;
}
// return tilt error convergence metric
void NavEKF3_core::getTiltError(float &ang) const
{
ang = stateStruct.quat.length();
}
// return the transformation matrix from XYZ (body) to NED axes
void NavEKF3_core::getRotationBodyToNED(Matrix3f &mat) const
{
outputDataNew.quat.rotation_matrix(mat);
mat = mat * _ahrs->get_rotation_vehicle_body_to_autopilot_body();
}
// return the quaternions defining the rotation from NED to XYZ (body) axes
void NavEKF3_core::getQuaternion(Quaternion& ret) const
{
ret = outputDataNew.quat;
}
// return the amount of yaw angle change due to the last yaw angle reset in radians
// returns the time of the last yaw angle reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastYawResetAngle(float &yawAng) const
{
yawAng = yawResetAngle;
return lastYawReset_ms;
}
// return the amount of NE position change due to the last position reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastPosNorthEastReset(Vector2f &pos) const
{
pos = posResetNE;
return lastPosReset_ms;
}
// return the amount of vertical position change due to the last vertical position reset in metres
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastPosDownReset(float &posD) const
{
posD = posResetD;
return lastPosResetD_ms;
}
// return the amount of NE velocity change due to the last velocity reset in metres/sec
// returns the time of the last reset or 0 if no reset has ever occurred
uint32_t NavEKF3_core::getLastVelNorthEastReset(Vector2f &vel) const
{
vel = velResetNE;
return lastVelReset_ms;
}
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
void NavEKF3_core::getWind(Vector3f &wind) const
{
wind.x = stateStruct.wind_vel.x;
wind.y = stateStruct.wind_vel.y;
wind.z = 0.0f; // currently don't estimate this
}
// return the NED velocity of the body frame origin in m/s
//
void NavEKF3_core::getVelNED(Vector3f &vel) const
{
// correct for the IMU position offset (EKF calculations are at the IMU)
vel = outputDataNew.velocity + velOffsetNED;
}
// Return the rate of change of vertical position in the down direction (dPosD/dt) of the body frame origin in m/s
float NavEKF3_core::getPosDownDerivative(void) const
{
// return the value calculated from a complementary filter applied to the EKF height and vertical acceleration
// correct for the IMU offset (EKF calculations are at the IMU)
return vertCompFiltState.vel + velOffsetNED.z;
}
// This returns the specific forces in the NED frame
void NavEKF3_core::getAccelNED(Vector3f &accelNED) const {
accelNED = velDotNED;
accelNED.z -= GRAVITY_MSS;
}
// Write the last estimated NE position of the body frame origin relative to the reference point (m).
// Return true if the estimate is valid
bool NavEKF3_core::getPosNE(Vector2f &posNE) const
{
// There are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no position estimate available)
if (PV_AidingMode != AID_NONE) {
// This is the normal mode of operation where we can use the EKF position states
// correct for the IMU offset (EKF calculations are at the IMU)
posNE.x = outputDataNew.position.x + posOffsetNED.x;
posNE.y = outputDataNew.position.y + posOffsetNED.y;
return true;
} else {
// In constant position mode the EKF position states are at the origin, so we cannot use them as a position estimate
if(validOrigin) {
if ((AP::gps().status() >= AP_GPS::GPS_OK_FIX_2D)) {
// If the origin has been set and we have GPS, then return the GPS position relative to the origin
const struct Location &gpsloc = AP::gps().location();
const Vector2f tempPosNE = EKF_origin.get_distance_NE(gpsloc);
posNE.x = tempPosNE.x;
posNE.y = tempPosNE.y;
return false;
} else if (rngBcnAlignmentStarted) {
// If we are attempting alignment using range beacon data, then report the position
posNE.x = receiverPos.x;
posNE.y = receiverPos.y;
return false;
} else {
// If no GPS fix is available, all we can do is provide the last known position
posNE.x = outputDataNew.position.x;
posNE.y = outputDataNew.position.y;
return false;
}
} else {
// If the origin has not been set, then we have no means of providing a relative position
posNE.x = 0.0f;
posNE.y = 0.0f;
return false;
}
}
return false;
}
// Write the last calculated D position of the body frame origin relative to the EKF origin (m).
// Return true if the estimate is valid
bool NavEKF3_core::getPosD(float &posD) const
{
// The EKF always has a height estimate regardless of mode of operation
// Correct for the IMU offset (EKF calculations are at the IMU)
// Also correct for changes to the origin height
if ((frontend->_originHgtMode & (1<<2)) == 0) {
// Any sensor height drift corrections relative to the WGS-84 reference are applied to the origin.
posD = outputDataNew.position.z + posOffsetNED.z;
} else {
// The origin height is static and corrections are applied to the local vertical position
// so that height returned by getLLH() = height returned by getOriginLLH - posD
posD = outputDataNew.position.z + posOffsetNED.z + 0.01f * (float)EKF_origin.alt - (float)ekfGpsRefHgt;
}
// Return the current height solution status
return filterStatus.flags.vert_pos;
}
// return the estimated height of body frame origin above ground level
bool NavEKF3_core::getHAGL(float &HAGL) const
{
HAGL = terrainState - outputDataNew.position.z - posOffsetNED.z;
// If we know the terrain offset and altitude, then we have a valid height above ground estimate
return !hgtTimeout && gndOffsetValid && healthy();
}
// Return the last calculated latitude, longitude and height in WGS-84
// If a calculated location isn't available, return a raw GPS measurement
// The status will return true if a calculation or raw measurement is available
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
bool NavEKF3_core::getLLH(struct Location &loc) const
{
const AP_GPS &gps = AP::gps();
Location origin;
float posD;
if(getPosD(posD) && getOriginLLH(origin)) {
// Altitude returned is an absolute altitude relative to the WGS-84 spherioid
loc.alt = origin.alt - posD*100;
loc.relative_alt = 0;
loc.terrain_alt = 0;
// there are three modes of operation, absolute position (GPS fusion), relative position (optical flow fusion) and constant position (no aiding)
if (filterStatus.flags.horiz_pos_abs || filterStatus.flags.horiz_pos_rel) {
loc.lat = EKF_origin.lat;
loc.lng = EKF_origin.lng;
loc.offset(outputDataNew.position.x, outputDataNew.position.y);
return true;
} else {
// we could be in constant position mode because the vehicle has taken off without GPS, or has lost GPS
// in this mode we cannot use the EKF states to estimate position so will return the best available data
if ((gps.status() >= AP_GPS::GPS_OK_FIX_2D)) {
// we have a GPS position fix to return
const struct Location &gpsloc = gps.location();
loc.lat = gpsloc.lat;
loc.lng = gpsloc.lng;
return true;
} else {
// if no GPS fix, provide last known position before entering the mode
loc.offset(lastKnownPositionNE.x, lastKnownPositionNE.y);
return false;
}
}
} else {
// If no origin has been defined for the EKF, then we cannot use its position states so return a raw
// GPS reading if available and return false
if ((gps.status() >= AP_GPS::GPS_OK_FIX_3D)) {
const struct Location &gpsloc = gps.location();
loc = gpsloc;
loc.relative_alt = 0;
loc.terrain_alt = 0;
}
return false;
}
}
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void NavEKF3_core::getEkfControlLimits(float &ekfGndSpdLimit, float &ekfNavVelGainScaler) const
{
// If in the last 10 seconds we have received flow data and no odometry data, then we are relying on optical flow
bool relyingOnFlowData = (imuSampleTime_ms - prevBodyVelFuseTime_ms > 1000)
&& (imuSampleTime_ms - flowValidMeaTime_ms <= 10000);
// If relying on optical flow, limit speed to prevent sensor limit being exceeded and adjust
// nav gains to prevent body rate feedback into flow rates destabilising the control loop
if (PV_AidingMode == AID_RELATIVE && relyingOnFlowData) {
// allow 1.0 rad/sec margin for angular motion
ekfGndSpdLimit = MAX((frontend->_maxFlowRate - 1.0f), 0.0f) * MAX((terrainState - stateStruct.position[2]), rngOnGnd);
// use standard gains up to 5.0 metres height and reduce above that
ekfNavVelGainScaler = 4.0f / MAX((terrainState - stateStruct.position[2]),4.0f);
} else {
ekfGndSpdLimit = 400.0f; //return 80% of max filter speed
ekfNavVelGainScaler = 1.0f;
}
}
// return the LLH location of the filters NED origin
bool NavEKF3_core::getOriginLLH(struct Location &loc) const
{
if (validOrigin) {
loc = EKF_origin;
// report internally corrected reference height if enabled
if ((frontend->_originHgtMode & (1<<2)) == 0) {
loc.alt = (int32_t)(100.0f * (float)ekfGpsRefHgt);
}
}
return validOrigin;
}
// return earth magnetic field estimates in measurement units / 1000
void NavEKF3_core::getMagNED(Vector3f &magNED) const
{
magNED = stateStruct.earth_magfield * 1000.0f;
}
// return body magnetic field estimates in measurement units / 1000
void NavEKF3_core::getMagXYZ(Vector3f &magXYZ) const
{
magXYZ = stateStruct.body_magfield*1000.0f;
}
// return magnetometer offsets
// return true if offsets are valid
bool NavEKF3_core::getMagOffsets(uint8_t mag_idx, Vector3f &magOffsets) const
{
if (!_ahrs->get_compass()) {
return false;
}
// compass offsets are valid if we have finalised magnetic field initialisation, magnetic field learning is not prohibited,
// primary compass is valid and state variances have converged
const float maxMagVar = 5E-6f;
bool variancesConverged = (P[19][19] < maxMagVar) && (P[20][20] < maxMagVar) && (P[21][21] < maxMagVar);
if ((mag_idx == magSelectIndex) &&
finalInflightMagInit &&
!inhibitMagStates &&
_ahrs->get_compass()->healthy(magSelectIndex) &&
variancesConverged) {
magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex) - stateStruct.body_magfield*1000.0f;
return true;
} else {
magOffsets = _ahrs->get_compass()->get_offsets(magSelectIndex);
return false;
}
}
// return the index for the active magnetometer
uint8_t NavEKF3_core::getActiveMag() const
{
return (uint8_t)magSelectIndex;
}
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void NavEKF3_core::getInnovations(Vector3f &velInnov, Vector3f &posInnov, Vector3f &magInnov, float &tasInnov, float &yawInnov) const
{
velInnov.x = innovVelPos[0];
velInnov.y = innovVelPos[1];
velInnov.z = innovVelPos[2];
posInnov.x = innovVelPos[3];
posInnov.y = innovVelPos[4];
posInnov.z = innovVelPos[5];
magInnov.x = 1e3f*innovMag[0]; // Convert back to sensor units
magInnov.y = 1e3f*innovMag[1]; // Convert back to sensor units
magInnov.z = 1e3f*innovMag[2]; // Convert back to sensor units
tasInnov = innovVtas;
yawInnov = innovYaw;
}
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
// this indicates the amount of margin available when tuning the various error traps
// also return the delta in position due to the last position reset
void NavEKF3_core::getVariances(float &velVar, float &posVar, float &hgtVar, Vector3f &magVar, float &tasVar, Vector2f &offset) const
{
velVar = sqrtf(velTestRatio);
posVar = sqrtf(posTestRatio);
hgtVar = sqrtf(hgtTestRatio);
// If we are using simple compass yaw fusion, populate all three components with the yaw test ratio to provide an equivalent output
magVar.x = sqrtf(MAX(magTestRatio.x,yawTestRatio));
magVar.y = sqrtf(MAX(magTestRatio.y,yawTestRatio));
magVar.z = sqrtf(MAX(magTestRatio.z,yawTestRatio));
tasVar = sqrtf(tasTestRatio);
offset = posResetNE;
}
// return the diagonals from the covariance matrix
void NavEKF3_core::getStateVariances(float stateVar[24])
{
for (uint8_t i=0; i<24; i++) {
stateVar[i] = P[i][i];
}
}
/*
return the filter fault status as a bitmasked integer
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
5 = badly conditioned Z magnetometer fusion
6 = badly conditioned airspeed fusion
7 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
void NavEKF3_core::getFilterFaults(uint16_t &faults) const
{
faults = (stateStruct.quat.is_nan()<<0 |
stateStruct.velocity.is_nan()<<1 |
faultStatus.bad_xmag<<2 |
faultStatus.bad_ymag<<3 |
faultStatus.bad_zmag<<4 |
faultStatus.bad_airspeed<<5 |
faultStatus.bad_sideslip<<6 |
!statesInitialised<<7);
}
/*
return filter timeout status as a bitmasked integer
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
4 = true airspeed measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
*/
void NavEKF3_core::getFilterTimeouts(uint8_t &timeouts) const
{
timeouts = (posTimeout<<0 |
velTimeout<<1 |
hgtTimeout<<2 |
magTimeout<<3 |
tasTimeout<<4);
}
// Return the navigation filter status message
void NavEKF3_core::getFilterStatus(nav_filter_status &status) const
{
status = filterStatus;
}
/*
return filter gps quality check status
*/
void NavEKF3_core::getFilterGpsStatus(nav_gps_status &faults) const
{
// init return value
faults.value = 0;
// set individual flags
faults.flags.bad_sAcc = gpsCheckStatus.bad_sAcc; // reported speed accuracy is insufficient
faults.flags.bad_hAcc = gpsCheckStatus.bad_hAcc; // reported horizontal position accuracy is insufficient
faults.flags.bad_vAcc = gpsCheckStatus.bad_vAcc; // reported vertical position accuracy is insufficient
faults.flags.bad_yaw = gpsCheckStatus.bad_yaw; // EKF heading accuracy is too large for GPS use
faults.flags.bad_sats = gpsCheckStatus.bad_sats; // reported number of satellites is insufficient
faults.flags.bad_horiz_drift = gpsCheckStatus.bad_horiz_drift; // GPS horizontal drift is too large to start using GPS (check assumes vehicle is static)
faults.flags.bad_hdop = gpsCheckStatus.bad_hdop; // reported HDoP is too large to start using GPS
faults.flags.bad_vert_vel = gpsCheckStatus.bad_vert_vel; // GPS vertical speed is too large to start using GPS (check assumes vehicle is static)
faults.flags.bad_fix = gpsCheckStatus.bad_fix; // The GPS cannot provide the 3D fix required
faults.flags.bad_horiz_vel = gpsCheckStatus.bad_horiz_vel; // The GPS horizontal speed is excessive (check assumes the vehicle is static)
}
// send an EKF_STATUS message to GCS
void NavEKF3_core::send_status_report(mavlink_channel_t chan) const
{
// prepare flags
uint16_t flags = 0;
if (filterStatus.flags.attitude) {
flags |= EKF_ATTITUDE;
}
if (filterStatus.flags.horiz_vel) {
flags |= EKF_VELOCITY_HORIZ;
}
if (filterStatus.flags.vert_vel) {
flags |= EKF_VELOCITY_VERT;
}
if (filterStatus.flags.horiz_pos_rel) {
flags |= EKF_POS_HORIZ_REL;
}
if (filterStatus.flags.horiz_pos_abs) {
flags |= EKF_POS_HORIZ_ABS;
}
if (filterStatus.flags.vert_pos) {
flags |= EKF_POS_VERT_ABS;
}
if (filterStatus.flags.terrain_alt) {
flags |= EKF_POS_VERT_AGL;
}
if (filterStatus.flags.const_pos_mode) {
flags |= EKF_CONST_POS_MODE;
}
if (filterStatus.flags.pred_horiz_pos_rel) {
flags |= EKF_PRED_POS_HORIZ_REL;
}
if (filterStatus.flags.pred_horiz_pos_abs) {
flags |= EKF_PRED_POS_HORIZ_ABS;
}
if (!filterStatus.flags.initalized) {
flags |= EKF_UNINITIALIZED;
}
if (filterStatus.flags.gps_glitching) {
flags |= (1<<15);
}
// get variances
float velVar, posVar, hgtVar, tasVar;
Vector3f magVar;
Vector2f offset;
getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
// Only report range finder normalised innovation levels if the EKF needs the data for primary
// height estimation or optical flow operation. This prevents false alarms at the GCS if a
// range finder is fitted for other applications
float temp;
if (((frontend->_useRngSwHgt > 0) && activeHgtSource == HGT_SOURCE_RNG) || (PV_AidingMode == AID_RELATIVE && flowDataValid)) {
temp = sqrtf(auxRngTestRatio);
} else {
temp = 0.0f;
}
const float mag_max = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
// send message
mavlink_msg_ekf_status_report_send(chan, flags, velVar, posVar, hgtVar, mag_max, temp, tasVar);
}
// report the reason for why the backend is refusing to initialise
const char *NavEKF3_core::prearm_failure_reason(void) const
{
if (gpsGoodToAlign) {
// we are not failing
return nullptr;
}
return prearm_fail_string;
}
// report the number of frames lapsed since the last state prediction
// this is used by other instances to level load
uint8_t NavEKF3_core::getFramesSincePredict(void) const
{
return framesSincePredict;
}
// publish output observer angular, velocity and position tracking error
void NavEKF3_core::getOutputTrackingError(Vector3f &error) const
{
error = outputTrackError;
}
bool NavEKF3_core::getDataEKFGSF(float *yaw_composite, float *yaw_composite_variance, float yaw[N_MODELS_EKFGSF], float innov_VN[N_MODELS_EKFGSF], float innov_VE[N_MODELS_EKFGSF], float weight[N_MODELS_EKFGSF])
{
if (yawEstimator != nullptr) {
return yawEstimator->getLogData(yaw_composite, yaw_composite_variance, yaw, innov_VN, innov_VE, weight);
}
return false;
}