3f1d9d7f69
* I mostly went through with grep and added an #include <AP_Param.h> below every #include <AP_Common.h>. Not all of these example sketches might strictly need AP_Param.
224 lines
5.4 KiB
Plaintext
224 lines
5.4 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
|
|
|
|
//
|
|
// Simple test for the AP_InertialSensor MPU6000 driver.
|
|
//
|
|
|
|
#include <FastSerial.h>
|
|
#include <SPI.h>
|
|
#include <Arduino_Mega_ISR_Registry.h>
|
|
#include <AP_PeriodicProcess.h>
|
|
#include <AP_ADC.h>
|
|
#include <AP_InertialSensor.h>
|
|
#include <AP_Math.h>
|
|
#include <AP_Common.h>
|
|
#include <AP_Param.h>
|
|
|
|
#define APM_HARDWARE_APM1 1
|
|
#define APM_HARDWARE_APM2 2
|
|
|
|
#define CONFIG_APM_HARDWARE APM_HARDWARE_APM2
|
|
//#define CONFIG_APM_HARDWARE APM_HARDWARE_APM1
|
|
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
|
#define SAMPLE_UNIT 1
|
|
#else
|
|
#define SAMPLE_UNIT 5 // we need 5x as many samples on the oilpan
|
|
#endif
|
|
|
|
FastSerialPort(Serial, 0);
|
|
|
|
Arduino_Mega_ISR_Registry isr_registry;
|
|
AP_TimerProcess scheduler;
|
|
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM2
|
|
AP_InertialSensor_MPU6000 ins;
|
|
#else
|
|
AP_ADC_ADS7844 adc;
|
|
AP_InertialSensor_Oilpan ins(&adc);
|
|
#endif
|
|
|
|
void setup(void)
|
|
{
|
|
Serial.begin(115200);
|
|
Serial.println("Doing INS startup...");
|
|
|
|
SPI.begin();
|
|
SPI.setClockDivider(SPI_CLOCK_DIV16); // 1MHZ SPI rate
|
|
|
|
isr_registry.init();
|
|
scheduler.init(&isr_registry);
|
|
|
|
// we need to stop the barometer from holding the SPI bus
|
|
pinMode(40, OUTPUT);
|
|
digitalWrite(40, HIGH);
|
|
|
|
#if CONFIG_APM_HARDWARE == APM_HARDWARE_APM1
|
|
adc.Init(&scheduler); // APM ADC library initialization
|
|
#endif
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
AP_InertialSensor::RATE_100HZ,
|
|
delay, NULL, &scheduler);
|
|
|
|
// display initial values
|
|
display_offsets_and_scaling();
|
|
}
|
|
|
|
void loop(void)
|
|
{
|
|
int16_t user_input;
|
|
|
|
Serial.println();
|
|
Serial.println("Menu: ");
|
|
Serial.println(" c) calibrate accelerometers");
|
|
Serial.println(" d) display offsets and scaling");
|
|
Serial.println(" l) level (capture offsets from level)");
|
|
Serial.println(" t) test");
|
|
|
|
// wait for user input
|
|
while( !Serial.available() ) {
|
|
delay(20);
|
|
}
|
|
|
|
// read in user input
|
|
while( Serial.available() ) {
|
|
user_input = Serial.read();
|
|
|
|
if( user_input == 'c' || user_input == 'C' ) {
|
|
run_calibration();
|
|
display_offsets_and_scaling();
|
|
}
|
|
|
|
if( user_input == 'd' || user_input == 'D' ) {
|
|
display_offsets_and_scaling();
|
|
}
|
|
|
|
if( user_input == 'l' || user_input == 'L' ) {
|
|
run_level();
|
|
display_offsets_and_scaling();
|
|
}
|
|
|
|
if( user_input == 't' || user_input == 'T' ) {
|
|
run_test();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void setup_printf_P(const prog_char_t *fmt, ...)
|
|
{
|
|
va_list arg_list;
|
|
va_start(arg_list, fmt);
|
|
Serial.vprintf_P(fmt, arg_list);
|
|
va_end(arg_list);
|
|
}
|
|
|
|
static void setup_wait_key(void)
|
|
{
|
|
// wait for user input
|
|
while (!Serial.available()) {
|
|
delay(20);
|
|
}
|
|
// clear input buffer
|
|
while( Serial.available() ) {
|
|
Serial.read();
|
|
}
|
|
}
|
|
|
|
void run_calibration()
|
|
{
|
|
// clear off any other characters (like line feeds,etc)
|
|
while( Serial.available() ) {
|
|
Serial.read();
|
|
}
|
|
|
|
ins.calibrate_accel(delay, NULL, setup_printf_P, setup_wait_key);
|
|
}
|
|
|
|
void display_offsets_and_scaling()
|
|
{
|
|
Vector3f accel_offsets = ins.get_accel_offsets();
|
|
Vector3f accel_scale = ins.get_accel_scale();
|
|
Vector3f gyro_offsets = ins.get_gyro_offsets();
|
|
|
|
// display results
|
|
Serial.printf_P(PSTR("\nAccel Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
|
|
accel_offsets.x,
|
|
accel_offsets.y,
|
|
accel_offsets.z);
|
|
Serial.printf_P(PSTR("Accel Scale X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
|
|
accel_scale.x,
|
|
accel_scale.y,
|
|
accel_scale.z);
|
|
Serial.printf_P(PSTR("Gyro Offsets X:%10.8f \t Y:%10.8f \t Z:%10.8f\n"),
|
|
gyro_offsets.x,
|
|
gyro_offsets.y,
|
|
gyro_offsets.z);
|
|
}
|
|
|
|
void run_level()
|
|
{
|
|
// clear off any input in the buffer
|
|
while( Serial.available() ) {
|
|
Serial.read();
|
|
}
|
|
|
|
// display message to user
|
|
Serial.print("Place APM on a level surface and press any key..\n");
|
|
|
|
// wait for user input
|
|
while( !Serial.available() ) {
|
|
delay(20);
|
|
}
|
|
while( Serial.available() ) {
|
|
Serial.read();
|
|
}
|
|
|
|
// run accel level
|
|
ins.init_accel(delay, NULL);
|
|
|
|
// display results
|
|
display_offsets_and_scaling();
|
|
}
|
|
|
|
void run_test()
|
|
{
|
|
Vector3f accel;
|
|
Vector3f gyro;
|
|
float temperature;
|
|
float length;
|
|
|
|
// flush any user input
|
|
while( Serial.available() ) {
|
|
Serial.read();
|
|
}
|
|
|
|
// clear out any existing samples from ins
|
|
ins.update();
|
|
|
|
// loop as long as user does not press a key
|
|
while( !Serial.available() ) {
|
|
|
|
// wait until we have 8 samples
|
|
while( ins.num_samples_available() < 8 * SAMPLE_UNIT ) {
|
|
delay(1);
|
|
}
|
|
|
|
// read samples from ins
|
|
ins.update();
|
|
accel = ins.get_accel();
|
|
gyro = ins.get_gyro();
|
|
temperature = ins.temperature();
|
|
|
|
length = sqrt(accel.x*accel.x + accel.y*accel.y + accel.z*accel.z);
|
|
|
|
// display results
|
|
Serial.printf_P(PSTR("Accel X:%4.2f \t Y:%4.2f \t Z:%4.2f \t len:%4.2f \t Gyro X:%4.2f \t Y:%4.2f \t Z:%4.2f \t Temp:%4.2f\n"),
|
|
accel.x, accel.y, accel.z, length, gyro.x, gyro.y, gyro.z, temperature);
|
|
}
|
|
|
|
// clear user input
|
|
while( Serial.available() ) {
|
|
Serial.read();
|
|
}
|
|
}
|