Ardupilot2/libraries/AP_Proximity/AP_Proximity_SITL.cpp

141 lines
4.5 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
#include <AP_Param/AP_Param.h>
#include "AP_Proximity_SITL.h"
#include <stdio.h>
extern const AP_HAL::HAL& hal;
#define PROXIMITY_MAX_RANGE 200.0f
#define PROXIMITY_ACCURACY 0.1f
/*
The constructor also initialises the proximity sensor.
*/
AP_Proximity_SITL::AP_Proximity_SITL(AP_Proximity &_frontend,
AP_Proximity::Proximity_State &_state):
AP_Proximity_Backend(_frontend, _state),
sitl(AP::sitl())
{
ap_var_type ptype;
fence_count = (AP_Int8 *)AP_Param::find("FENCE_TOTAL", &ptype);
if (fence_count == nullptr || ptype != AP_PARAM_INT8) {
AP_HAL::panic("Proximity_SITL: Failed to find FENCE_TOTAL");
}
fence_alt_max = (AP_Float *)AP_Param::find("FENCE_ALT_MAX", &ptype);
if (fence_alt_max == nullptr || ptype != AP_PARAM_FLOAT) {
AP_HAL::panic("Proximity_SITL: Failed to find FENCE_ALT_MAX");
}
}
// update the state of the sensor
void AP_Proximity_SITL::update(void)
{
load_fence();
current_loc.lat = sitl->state.latitude * 1.0e7;
current_loc.lng = sitl->state.longitude * 1.0e7;
current_loc.alt = sitl->state.altitude * 1.0e2;
if (fence && fence_loader.boundary_valid(fence_count->get(), fence)) {
// update distance in one sector
if (get_distance_to_fence(_sector_middle_deg[last_sector], _distance[last_sector])) {
set_status(AP_Proximity::Proximity_Good);
_distance_valid[last_sector] = true;
_angle[last_sector] = _sector_middle_deg[last_sector];
update_boundary_for_sector(last_sector, true);
} else {
_distance_valid[last_sector] = false;
}
last_sector++;
if (last_sector >= _num_sectors) {
last_sector = 0;
}
} else {
set_status(AP_Proximity::Proximity_NoData);
}
}
void AP_Proximity_SITL::load_fence(void)
{
uint32_t now = AP_HAL::millis();
if (now - last_load_ms < 1000) {
return;
}
last_load_ms = now;
if (fence == nullptr) {
fence = (Vector2l *)fence_loader.create_point_array(sizeof(Vector2l));
}
if (fence == nullptr) {
return;
}
for (uint8_t i=0; i<fence_count->get(); i++) {
fence_loader.load_point_from_eeprom(i, fence[i]);
}
}
// get distance in meters to fence in a particular direction in degrees (0 is forward, angles increase in the clockwise direction)
bool AP_Proximity_SITL::get_distance_to_fence(float angle_deg, float &distance) const
{
if (!fence_loader.boundary_valid(fence_count->get(), fence)) {
return false;
}
// convert to earth frame
angle_deg = wrap_360(sitl->state.yawDeg + angle_deg);
/*
simple bisection search to find distance. Not really efficient,
but we can afford the CPU in SITL
*/
float min_dist = 0, max_dist = PROXIMITY_MAX_RANGE;
while (max_dist - min_dist > PROXIMITY_ACCURACY) {
float test_dist = (max_dist+min_dist)*0.5f;
Location loc = current_loc;
loc.offset_bearing(angle_deg, test_dist);
Vector2l vecloc(loc.lat, loc.lng);
if (fence_loader.boundary_breached(vecloc, fence_count->get(), fence)) {
max_dist = test_dist;
} else {
min_dist = test_dist;
}
}
distance = min_dist;
return true;
}
// get maximum and minimum distances (in meters) of primary sensor
float AP_Proximity_SITL::distance_max() const
{
return PROXIMITY_MAX_RANGE;
}
float AP_Proximity_SITL::distance_min() const
{
return 0.0f;
}
// get distance upwards in meters. returns true on success
bool AP_Proximity_SITL::get_upward_distance(float &distance) const
{
// return distance to fence altitude
distance = MAX(0.0f, fence_alt_max->get() - sitl->height_agl);
return true;
}
#endif // CONFIG_HAL_BOARD