Ardupilot2/libraries/AP_HAL_Linux/CANSocketIface.cpp

574 lines
16 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Many thanks to members of the UAVCAN project:
* Pavel Kirienko <pavel.kirienko@gmail.com>
* Ilia Sheremet <illia.sheremet@gmail.com>
*
* license info can be found in the uavcan submodule located:
* modules/uavcan/libuavcan_drivers/linux/include/uavcan_linux/socketcan.hpp
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/system.h>
#if HAL_NUM_CAN_IFACES
#include "CANSocketIface.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <net/if.h>
#include <linux/can/raw.h>
#include <cstring>
#include "Scheduler.h"
#include <AP_CANManager/AP_CANManager.h>
#include <AP_Common/ExpandingString.h>
extern const AP_HAL::HAL& hal;
using namespace Linux;
#if HAL_CANMANAGER_ENABLED
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANLinuxIface", fmt, ##args); } while (0)
#else
#define Debug(fmt, args...)
#endif
static can_frame makeSocketCanFrame(const AP_HAL::CANFrame& uavcan_frame)
{
can_frame sockcan_frame { uavcan_frame.id& AP_HAL::CANFrame::MaskExtID, uavcan_frame.dlc, { } };
std::copy(uavcan_frame.data, uavcan_frame.data + uavcan_frame.dlc, sockcan_frame.data);
if (uavcan_frame.isExtended()) {
sockcan_frame.can_id |= CAN_EFF_FLAG;
}
if (uavcan_frame.isErrorFrame()) {
sockcan_frame.can_id |= CAN_ERR_FLAG;
}
if (uavcan_frame.isRemoteTransmissionRequest()) {
sockcan_frame.can_id |= CAN_RTR_FLAG;
}
return sockcan_frame;
}
static AP_HAL::CANFrame makeUavcanFrame(const can_frame& sockcan_frame)
{
AP_HAL::CANFrame uavcan_frame(sockcan_frame.can_id & CAN_EFF_MASK, sockcan_frame.data, sockcan_frame.can_dlc);
if (sockcan_frame.can_id & CAN_EFF_FLAG) {
uavcan_frame.id |= AP_HAL::CANFrame::FlagEFF;
}
if (sockcan_frame.can_id & CAN_ERR_FLAG) {
uavcan_frame.id |= AP_HAL::CANFrame::FlagERR;
}
if (sockcan_frame.can_id & CAN_RTR_FLAG) {
uavcan_frame.id |= AP_HAL::CANFrame::FlagRTR;
}
return uavcan_frame;
}
bool CANIface::is_initialized() const
{
return _initialized;
}
int CANIface::_openSocket(const std::string& iface_name)
{
errno = 0;
int s = socket(PF_CAN, SOCK_RAW, CAN_RAW);
if (s < 0) {
return s;
}
std::shared_ptr<void> defer(&s, [](int* fd) { if (*fd >= 0) close(*fd); });
const int ret = s;
// Detect the iface index
auto ifr = ifreq();
if (iface_name.length() >= IFNAMSIZ) {
errno = ENAMETOOLONG;
return -1;
}
std::strncpy(ifr.ifr_name, iface_name.c_str(), iface_name.length());
if (ioctl(s, SIOCGIFINDEX, &ifr) < 0 || ifr.ifr_ifindex < 0) {
return -1;
}
// Bind to the specified CAN iface
{
auto addr = sockaddr_can();
addr.can_family = AF_CAN;
addr.can_ifindex = ifr.ifr_ifindex;
if (bind(s, reinterpret_cast<sockaddr*>(&addr), sizeof(addr)) < 0) {
return -1;
}
}
// Configure
{
const int on = 1;
// Timestamping
if (setsockopt(s, SOL_SOCKET, SO_TIMESTAMP, &on, sizeof(on)) < 0) {
return -1;
}
// Socket loopback
if (setsockopt(s, SOL_CAN_RAW, CAN_RAW_RECV_OWN_MSGS, &on, sizeof(on)) < 0) {
return -1;
}
// Non-blocking
if (fcntl(s, F_SETFL, O_NONBLOCK) < 0) {
return -1;
}
}
// Validate the resulting socket
{
int socket_error = 0;
socklen_t errlen = sizeof(socket_error);
getsockopt(s, SOL_SOCKET, SO_ERROR, reinterpret_cast<void*>(&socket_error), &errlen);
if (socket_error != 0) {
errno = socket_error;
return -1;
}
}
s = -1;
return ret;
}
int16_t CANIface::send(const AP_HAL::CANFrame& frame, const uint64_t tx_deadline,
const CANIface::CanIOFlags flags)
{
CanTxItem tx_item {};
tx_item.frame = frame;
if (flags & Loopback) {
tx_item.loopback = true;
}
if (flags & AbortOnError) {
tx_item.abort_on_error = true;
}
tx_item.setup = true;
tx_item.index = _tx_frame_counter;
tx_item.deadline = tx_deadline;
WITH_SEMAPHORE(sem);
_tx_queue.emplace(tx_item);
_tx_frame_counter++;
stats.tx_requests++;
_pollRead(); // Read poll is necessary because it can release the pending TX flag
_pollWrite();
return AP_HAL::CANIface::send(frame, tx_deadline, flags);
}
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us,
CANIface::CanIOFlags& out_flags)
{
WITH_SEMAPHORE(sem);
if (_rx_queue.empty()) {
_pollRead(); // This allows to use the socket not calling poll() explicitly.
if (_rx_queue.empty()) {
return 0;
}
}
{
const CanRxItem& rx = _rx_queue.front();
out_frame = rx.frame;
out_timestamp_us = rx.timestamp_us;
out_flags = rx.flags;
}
(void)_rx_queue.pop();
if (sem_handle != nullptr) {
sem_handle->signal();
}
return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags);
}
bool CANIface::_hasReadyTx()
{
WITH_SEMAPHORE(sem);
return !_tx_queue.empty() && (_frames_in_socket_tx_queue < _max_frames_in_socket_tx_queue);
}
bool CANIface::_hasReadyRx()
{
WITH_SEMAPHORE(sem);
return !_rx_queue.empty();
}
void CANIface::_poll(bool read, bool write)
{
if (read) {
stats.num_poll_rx_events++;
_pollRead(); // Read poll must be executed first because it may decrement _frames_in_socket_tx_queue
}
if (write) {
stats.num_poll_tx_events++;
_pollWrite();
}
}
bool CANIface::configureFilters(const CanFilterConfig* const filter_configs,
const uint16_t num_configs)
{
if (filter_configs == nullptr || mode_ != FilteredMode) {
return false;
}
_hw_filters_container.clear();
_hw_filters_container.resize(num_configs);
for (unsigned i = 0; i < num_configs; i++) {
const CanFilterConfig& fc = filter_configs[i];
_hw_filters_container[i].can_id = fc.id & AP_HAL::CANFrame::MaskExtID;
_hw_filters_container[i].can_mask = fc.mask & AP_HAL::CANFrame::MaskExtID;
if (fc.id & AP_HAL::CANFrame::FlagEFF) {
_hw_filters_container[i].can_id |= CAN_EFF_FLAG;
}
if (fc.id & AP_HAL::CANFrame::FlagRTR) {
_hw_filters_container[i].can_id |= CAN_RTR_FLAG;
}
if (fc.mask & AP_HAL::CANFrame::FlagEFF) {
_hw_filters_container[i].can_mask |= CAN_EFF_FLAG;
}
if (fc.mask & AP_HAL::CANFrame::FlagRTR) {
_hw_filters_container[i].can_mask |= CAN_RTR_FLAG;
}
}
return true;
}
/**
* SocketCAN emulates the CAN filters in software, so the number of filters is virtually unlimited.
* This method returns a constant value.
*/
static constexpr unsigned NumFilters = CAN_FILTER_NUMBER;
uint16_t CANIface::getNumFilters() const { return NumFilters; }
uint32_t CANIface::getErrorCount() const
{
uint32_t ec = 0;
for (auto& kv : _errors) { ec += kv.second; }
return ec;
}
void CANIface::_pollWrite()
{
while (_hasReadyTx()) {
WITH_SEMAPHORE(sem);
const CanTxItem tx = _tx_queue.top();
uint64_t curr_time = AP_HAL::micros64();
if (tx.deadline >= curr_time) {
// hal.console->printf("%x TDEAD: %lu CURRT: %lu DEL: %lu\n",tx.frame.id, tx.deadline, curr_time, tx.deadline-curr_time);
const int res = _write(tx.frame);
if (res == 1) { // Transmitted successfully
_incrementNumFramesInSocketTxQueue();
if (tx.loopback) {
_pending_loopback_ids.insert(tx.frame.id);
}
stats.tx_success++;
stats.last_transmit_us = curr_time;
} else if (res == 0) { // Not transmitted, nor is it an error
stats.tx_overflow++;
break; // Leaving the loop, the frame remains enqueued for the next retry
} else { // Transmission error
stats.tx_rejected++;
}
} else {
// hal.console->printf("TDEAD: %lu CURRT: %lu DEL: %lu\n", tx.deadline, curr_time, curr_time-tx.deadline);
stats.tx_timedout++;
}
// Removing the frame from the queue even if transmission failed
(void)_tx_queue.pop();
}
}
bool CANIface::_pollRead()
{
uint8_t iterations_count = 0;
while (iterations_count < CAN_MAX_POLL_ITERATIONS_COUNT)
{
iterations_count++;
CanRxItem rx;
rx.timestamp_us = AP_HAL::micros64(); // Monotonic timestamp is not required to be precise (unlike UTC)
bool loopback = false;
const int res = _read(rx.frame, rx.timestamp_us, loopback);
if (res == 1) {
bool accept = true;
if (loopback) { // We receive loopback for all CAN frames
_confirmSentFrame();
rx.flags |= Loopback;
accept = _wasInPendingLoopbackSet(rx.frame);
stats.tx_confirmed++;
}
if (accept) {
WITH_SEMAPHORE(sem);
_rx_queue.push(rx);
stats.rx_received++;
return true;
}
} else if (res == 0) {
break;
} else {
stats.rx_errors++;
break;
}
}
return false;
}
int CANIface::_write(const AP_HAL::CANFrame& frame) const
{
if (_fd < 0) {
return -1;
}
errno = 0;
const can_frame sockcan_frame = makeSocketCanFrame(frame);
const int res = write(_fd, &sockcan_frame, sizeof(sockcan_frame));
if (res <= 0) {
if (errno == ENOBUFS || errno == EAGAIN) { // Writing is not possible atm, not an error
return 0;
}
return res;
}
if (res != sizeof(sockcan_frame)) {
return -1;
}
return 1;
}
int CANIface::_read(AP_HAL::CANFrame& frame, uint64_t& timestamp_us, bool& loopback) const
{
if (_fd < 0) {
return -1;
}
auto iov = iovec();
auto sockcan_frame = can_frame();
iov.iov_base = &sockcan_frame;
iov.iov_len = sizeof(sockcan_frame);
union {
uint8_t data[CMSG_SPACE(sizeof(::timeval))];
struct cmsghdr align;
} control;
auto msg = msghdr();
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = control.data;
msg.msg_controllen = sizeof(control.data);
const int res = recvmsg(_fd, &msg, MSG_DONTWAIT);
if (res <= 0) {
return (res < 0 && errno == EWOULDBLOCK) ? 0 : res;
}
/*
* Flags
*/
loopback = (msg.msg_flags & static_cast<int>(MSG_CONFIRM)) != 0;
if (!loopback && !_checkHWFilters(sockcan_frame)) {
return 0;
}
frame = makeUavcanFrame(sockcan_frame);
/*
* Timestamp
*/
timestamp_us = AP_HAL::micros64();
return 1;
}
// Might block forever, only to be used for testing
void CANIface::flush_tx()
{
WITH_SEMAPHORE(sem);
do {
_updateDownStatusFromPollResult(_pollfd);
_poll(true, true);
} while(!_tx_queue.empty() && !_down);
}
void CANIface::clear_rx()
{
WITH_SEMAPHORE(sem);
// Clean Rx Queue
std::queue<CanRxItem> empty;
std::swap( _rx_queue, empty );
}
void CANIface::_incrementNumFramesInSocketTxQueue()
{
_frames_in_socket_tx_queue++;
}
void CANIface::_confirmSentFrame()
{
if (_frames_in_socket_tx_queue > 0) {
_frames_in_socket_tx_queue--;
}
}
bool CANIface::_wasInPendingLoopbackSet(const AP_HAL::CANFrame& frame)
{
if (_pending_loopback_ids.count(frame.id) > 0) {
_pending_loopback_ids.erase(frame.id);
return true;
}
return false;
}
bool CANIface::_checkHWFilters(const can_frame& frame) const
{
if (!_hw_filters_container.empty()) {
for (auto& f : _hw_filters_container) {
if (((frame.can_id & f.can_mask) ^ f.can_id) == 0) {
return true;
}
}
return false;
} else {
return true;
}
}
void CANIface::_updateDownStatusFromPollResult(const pollfd& pfd)
{
if (!_down && (pfd.revents & POLLERR)) {
int error = 0;
socklen_t errlen = sizeof(error);
getsockopt(pfd.fd, SOL_SOCKET, SO_ERROR, reinterpret_cast<void*>(&error), &errlen);
_down= error == ENETDOWN || error == ENODEV;
stats.num_downs++;
Debug("Iface %d is dead; error %d", _fd, error);
}
}
bool CANIface::init(const uint32_t bitrate, const OperatingMode mode)
{
char iface_name[16];
#if HAL_LINUX_USE_VIRTUAL_CAN
sprintf(iface_name, "vcan%u", _self_index);
#else
sprintf(iface_name, "can%u", _self_index);
#endif
if (_initialized) {
return _initialized;
}
bitrate_ = bitrate;
mode_ = mode;
// TODO: Add possibility change bitrate
_fd = _openSocket(iface_name);
Debug("Socket opened iface_name: %s fd: %d", iface_name, _fd);
if (_fd > 0) {
_bitrate = bitrate;
_initialized = true;
} else {
_initialized = false;
}
return _initialized;
}
bool CANIface::select(bool &read_select, bool &write_select,
const AP_HAL::CANFrame* const pending_tx, uint64_t blocking_deadline)
{
// Detecting whether we need to block at all
bool need_block = !write_select; // Write queue is infinite
if (read_select && _hasReadyRx()) {
need_block = false;
}
if (need_block) {
if (_down) {
return false;
} else {
_pollfd.fd = _fd;
_pollfd.events |= POLLIN;
stats.num_rx_poll_req++;
if (_hasReadyTx() && write_select) {
_pollfd.events |= POLLOUT;
stats.num_tx_poll_req++;
}
}
const uint64_t now_us = AP_HAL::micros64();
if (sem_handle != nullptr && blocking_deadline > now_us) {
IGNORE_RETURN(sem_handle->wait(blocking_deadline - now_us));
}
}
// Writing the output masks
if (!_down) {
write_select = true; // Always ready to write if not down
} else {
write_select = false;
}
if (_hasReadyRx()) {
read_select = true; // Readability depends only on RX buf, even if down
} else {
read_select = false;
}
// Return value is irrelevant as long as it's non-negative
return true;
}
bool CANIface::set_event_handle(AP_HAL::BinarySemaphore *handle)
{
sem_handle = handle;
return true;
}
void CANIface::get_stats(ExpandingString &str)
{
str.printf("tx_requests: %u\n"
"tx_rejected: %u\n"
"tx_overflow: %u\n"
"tx_confirmed: %u\n"
"tx_success: %u\n"
"tx_timedout: %u\n"
"rx_received: %u\n"
"rx_errors: %u\n"
"num_downs: %u\n"
"num_rx_poll_req: %u\n"
"num_tx_poll_req: %u\n"
"num_poll_waits: %u\n"
"num_poll_tx_events: %u\n"
"num_poll_rx_events: %u\n",
stats.tx_requests,
stats.tx_rejected,
stats.tx_overflow,
stats.tx_confirmed,
stats.tx_success,
stats.tx_timedout,
stats.rx_received,
stats.rx_errors,
stats.num_downs,
stats.num_rx_poll_req,
stats.num_tx_poll_req,
stats.num_poll_waits,
stats.num_poll_tx_events,
stats.num_poll_rx_events);
}
#endif