9a23152ee4
Switching in and out of aiding modes was being performed in more than one place and was using two variables. The reversion out of GPS mode due to prolonged loss of GPS was not working. This consolidates the logic and ensures that PV_AidingMode is only changed by the setAidingMode function.
706 lines
32 KiB
C++
706 lines
32 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
|
|
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_150
|
|
|
|
#include "AP_NavEKF2.h"
|
|
#include "AP_NavEKF2_core.h"
|
|
#include <AP_AHRS/AP_AHRS.h>
|
|
#include <AP_Vehicle/AP_Vehicle.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/********************************************************
|
|
* RESET FUNCTIONS *
|
|
********************************************************/
|
|
|
|
/********************************************************
|
|
* FUSE MEASURED_DATA *
|
|
********************************************************/
|
|
|
|
// select fusion of optical flow measurements
|
|
void NavEKF2_core::SelectFlowFusion()
|
|
{
|
|
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
|
|
// If so, don't fuse measurements on this time step to reduce frame over-runs
|
|
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
|
|
if (magFusePerformed && dtIMUavg < 0.005f && !optFlowFusionDelayed) {
|
|
optFlowFusionDelayed = true;
|
|
return;
|
|
} else {
|
|
optFlowFusionDelayed = false;
|
|
}
|
|
|
|
// start performance timer
|
|
hal.util->perf_begin(_perf_FuseOptFlow);
|
|
// Perform Data Checks
|
|
// Check if the optical flow data is still valid
|
|
flowDataValid = ((imuSampleTime_ms - flowValidMeaTime_ms) < 1000);
|
|
// check is the terrain offset estimate is still valid
|
|
gndOffsetValid = ((imuSampleTime_ms - gndHgtValidTime_ms) < 5000);
|
|
// Perform tilt check
|
|
bool tiltOK = (Tnb_flow.c.z > frontend->DCM33FlowMin);
|
|
// Constrain measurements to zero if we are on the ground
|
|
if (frontend->_fusionModeGPS == 3 && !takeOffDetected) {
|
|
ofDataDelayed.flowRadXYcomp.zero();
|
|
ofDataDelayed.flowRadXY.zero();
|
|
flowDataValid = true;
|
|
}
|
|
|
|
// if we do have valid flow measurements, fuse data into a 1-state EKF to estimate terrain height
|
|
// we don't do terrain height estimation in optical flow only mode as the ground becomes our zero height reference
|
|
if ((flowDataToFuse || rangeDataToFuse) && tiltOK) {
|
|
// fuse optical flow data into the terrain estimator if available and if there is no range data (range data is better)
|
|
fuseOptFlowData = (flowDataToFuse && !rangeDataToFuse);
|
|
// Estimate the terrain offset (runs a one state EKF)
|
|
EstimateTerrainOffset();
|
|
}
|
|
|
|
// Fuse optical flow data into the main filter if not excessively tilted and we are in the correct mode
|
|
if (flowDataToFuse && tiltOK && PV_AidingMode == AID_RELATIVE)
|
|
{
|
|
// Set the flow noise used by the fusion processes
|
|
R_LOS = sq(MAX(frontend->_flowNoise, 0.05f));
|
|
// Fuse the optical flow X and Y axis data into the main filter sequentially
|
|
FuseOptFlow();
|
|
// reset flag to indicate that no new flow data is available for fusion
|
|
flowDataToFuse = false;
|
|
}
|
|
|
|
// stop the performance timer
|
|
hal.util->perf_end(_perf_FuseOptFlow);
|
|
}
|
|
|
|
/*
|
|
Estimation of terrain offset using a single state EKF
|
|
The filter can fuse motion compensated optiocal flow rates and range finder measurements
|
|
*/
|
|
void NavEKF2_core::EstimateTerrainOffset()
|
|
{
|
|
// start performance timer
|
|
hal.util->perf_begin(_perf_TerrainOffset);
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
float heightAboveGndEst = MAX((terrainState - stateStruct.position.z), rngOnGnd);
|
|
|
|
// calculate a predicted LOS rate squared
|
|
float velHorizSq = sq(stateStruct.velocity.x) + sq(stateStruct.velocity.y);
|
|
float losRateSq = velHorizSq / sq(heightAboveGndEst);
|
|
|
|
// don't update terrain offset state if there is no range finder and not generating enough LOS rate, or without GPS, as it is poorly observable
|
|
if (!rangeDataToFuse && (gpsNotAvailable || PV_AidingMode == AID_RELATIVE || velHorizSq < 25.0f || losRateSq < 0.01f)) {
|
|
inhibitGndState = true;
|
|
} else {
|
|
inhibitGndState = false;
|
|
// record the time we last updated the terrain offset state
|
|
gndHgtValidTime_ms = imuSampleTime_ms;
|
|
|
|
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
|
|
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
|
|
float distanceTravelledSq = sq(stateStruct.position[0] - prevPosN) + sq(stateStruct.position[1] - prevPosE);
|
|
distanceTravelledSq = MIN(distanceTravelledSq, 100.0f);
|
|
prevPosN = stateStruct.position[0];
|
|
prevPosE = stateStruct.position[1];
|
|
|
|
// in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity
|
|
float timeLapsed = MIN(0.001f * (imuSampleTime_ms - timeAtLastAuxEKF_ms), 1.0f);
|
|
float Pincrement = (distanceTravelledSq * sq(0.01f*float(frontend->gndGradientSigma))) + sq(timeLapsed)*P[5][5];
|
|
Popt += Pincrement;
|
|
timeAtLastAuxEKF_ms = imuSampleTime_ms;
|
|
|
|
// fuse range finder data
|
|
if (rangeDataToFuse) {
|
|
// predict range
|
|
float predRngMeas = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
|
|
|
// Copy required states to local variable names
|
|
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
|
|
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
|
|
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
|
|
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
|
|
|
|
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
|
|
float R_RNG = frontend->_rngNoise;
|
|
|
|
// calculate Kalman gain
|
|
float SK_RNG = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
|
float K_RNG = Popt/(SK_RNG*(R_RNG + Popt/sq(SK_RNG)));
|
|
|
|
// Calculate the innovation variance for data logging
|
|
varInnovRng = (R_RNG + Popt/sq(SK_RNG));
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
|
|
|
|
// Calculate the measurement innovation
|
|
innovRng = predRngMeas - rangeDataDelayed.rng;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
auxRngTestRatio = sq(innovRng) / (sq(MAX(0.01f * (float)frontend->_rngInnovGate, 1.0f)) * varInnovRng);
|
|
|
|
// Check the innovation for consistency and don't fuse if > 5Sigma
|
|
if ((sq(innovRng)*SK_RNG) < 25.0f)
|
|
{
|
|
// correct the state
|
|
terrainState -= K_RNG * innovRng;
|
|
|
|
// constrain the state
|
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
|
|
|
|
// correct the covariance
|
|
Popt = Popt - sq(Popt)/(SK_RNG*(R_RNG + Popt/sq(SK_RNG))*(sq(q0) - sq(q1) - sq(q2) + sq(q3)));
|
|
|
|
// prevent the state variance from becoming negative
|
|
Popt = MAX(Popt,0.0f);
|
|
|
|
}
|
|
}
|
|
|
|
if (fuseOptFlowData) {
|
|
|
|
Vector3f relVelSensor; // velocity of sensor relative to ground in sensor axes
|
|
float losPred; // predicted optical flow angular rate measurement
|
|
float q0 = stateStruct.quat[0]; // quaternion at optical flow measurement time
|
|
float q1 = stateStruct.quat[1]; // quaternion at optical flow measurement time
|
|
float q2 = stateStruct.quat[2]; // quaternion at optical flow measurement time
|
|
float q3 = stateStruct.quat[3]; // quaternion at optical flow measurement time
|
|
float K_OPT;
|
|
float H_OPT;
|
|
|
|
// predict range to centre of image
|
|
float flowRngPred = MAX((terrainState - stateStruct.position[2]),rngOnGnd) / Tnb_flow.c.z;
|
|
|
|
// constrain terrain height to be below the vehicle
|
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
|
|
|
|
// calculate relative velocity in sensor frame
|
|
relVelSensor = Tnb_flow*stateStruct.velocity;
|
|
|
|
// divide velocity by range, subtract body rates and apply scale factor to
|
|
// get predicted sensed angular optical rates relative to X and Y sensor axes
|
|
losPred = relVelSensor.length()/flowRngPred;
|
|
|
|
// calculate innovations
|
|
auxFlowObsInnov = losPred - sqrtf(sq(flowRadXYcomp[0]) + sq(flowRadXYcomp[1]));
|
|
|
|
// calculate observation jacobian
|
|
float t3 = sq(q0);
|
|
float t4 = sq(q1);
|
|
float t5 = sq(q2);
|
|
float t6 = sq(q3);
|
|
float t10 = q0*q3*2.0f;
|
|
float t11 = q1*q2*2.0f;
|
|
float t14 = t3+t4-t5-t6;
|
|
float t15 = t14*stateStruct.velocity.x;
|
|
float t16 = t10+t11;
|
|
float t17 = t16*stateStruct.velocity.y;
|
|
float t18 = q0*q2*2.0f;
|
|
float t19 = q1*q3*2.0f;
|
|
float t20 = t18-t19;
|
|
float t21 = t20*stateStruct.velocity.z;
|
|
float t2 = t15+t17-t21;
|
|
float t7 = t3-t4-t5+t6;
|
|
float t8 = stateStruct.position[2]-terrainState;
|
|
float t9 = 1.0f/sq(t8);
|
|
float t24 = t3-t4+t5-t6;
|
|
float t25 = t24*stateStruct.velocity.y;
|
|
float t26 = t10-t11;
|
|
float t27 = t26*stateStruct.velocity.x;
|
|
float t28 = q0*q1*2.0f;
|
|
float t29 = q2*q3*2.0f;
|
|
float t30 = t28+t29;
|
|
float t31 = t30*stateStruct.velocity.z;
|
|
float t12 = t25-t27+t31;
|
|
float t13 = sq(t7);
|
|
float t22 = sq(t2);
|
|
float t23 = 1.0f/(t8*t8*t8);
|
|
float t32 = sq(t12);
|
|
H_OPT = 0.5f*(t13*t22*t23*2.0f+t13*t23*t32*2.0f)/sqrtf(t9*t13*t22+t9*t13*t32);
|
|
|
|
// calculate innovation variances
|
|
auxFlowObsInnovVar = H_OPT*Popt*H_OPT + R_LOS;
|
|
|
|
// calculate Kalman gain
|
|
K_OPT = Popt*H_OPT/auxFlowObsInnovVar;
|
|
|
|
// calculate the innovation consistency test ratio
|
|
auxFlowTestRatio = sq(auxFlowObsInnov) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * auxFlowObsInnovVar);
|
|
|
|
// don't fuse if optical flow data is outside valid range
|
|
if (MAX(flowRadXY[0],flowRadXY[1]) < frontend->_maxFlowRate) {
|
|
|
|
// correct the state
|
|
terrainState -= K_OPT * auxFlowObsInnov;
|
|
|
|
// constrain the state
|
|
terrainState = MAX(terrainState, stateStruct.position[2] + rngOnGnd);
|
|
|
|
// correct the covariance
|
|
Popt = Popt - K_OPT * H_OPT * Popt;
|
|
|
|
// prevent the state variances from becoming negative
|
|
Popt = MAX(Popt,0.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// stop the performance timer
|
|
hal.util->perf_end(_perf_TerrainOffset);
|
|
}
|
|
|
|
/*
|
|
* Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox.
|
|
* The script file used to generate these and other equations in this filter can be found here:
|
|
* https://github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
|
|
* Requires a valid terrain height estimate.
|
|
*/
|
|
void NavEKF2_core::FuseOptFlow()
|
|
{
|
|
Vector24 H_LOS;
|
|
Vector3f relVelSensor;
|
|
Vector14 SH_LOS;
|
|
Vector2 losPred;
|
|
|
|
// Copy required states to local variable names
|
|
float q0 = stateStruct.quat[0];
|
|
float q1 = stateStruct.quat[1];
|
|
float q2 = stateStruct.quat[2];
|
|
float q3 = stateStruct.quat[3];
|
|
float vn = stateStruct.velocity.x;
|
|
float ve = stateStruct.velocity.y;
|
|
float vd = stateStruct.velocity.z;
|
|
float pd = stateStruct.position.z;
|
|
|
|
// constrain height above ground to be above range measured on ground
|
|
float heightAboveGndEst = MAX((terrainState - pd), rngOnGnd);
|
|
float ptd = pd + heightAboveGndEst;
|
|
|
|
// Calculate common expressions for observation jacobians
|
|
SH_LOS[0] = sq(q0) - sq(q1) - sq(q2) + sq(q3);
|
|
SH_LOS[1] = vn*(sq(q0) + sq(q1) - sq(q2) - sq(q3)) - vd*(2*q0*q2 - 2*q1*q3) + ve*(2*q0*q3 + 2*q1*q2);
|
|
SH_LOS[2] = ve*(sq(q0) - sq(q1) + sq(q2) - sq(q3)) + vd*(2*q0*q1 + 2*q2*q3) - vn*(2*q0*q3 - 2*q1*q2);
|
|
SH_LOS[3] = 1/(pd - ptd);
|
|
SH_LOS[4] = vd*SH_LOS[0] - ve*(2*q0*q1 - 2*q2*q3) + vn*(2*q0*q2 + 2*q1*q3);
|
|
SH_LOS[5] = 2.0f*q0*q2 - 2.0f*q1*q3;
|
|
SH_LOS[6] = 2.0f*q0*q1 + 2.0f*q2*q3;
|
|
SH_LOS[7] = q0*q0;
|
|
SH_LOS[8] = q1*q1;
|
|
SH_LOS[9] = q2*q2;
|
|
SH_LOS[10] = q3*q3;
|
|
SH_LOS[11] = q0*q3*2.0f;
|
|
SH_LOS[12] = pd-ptd;
|
|
SH_LOS[13] = 1.0f/(SH_LOS[12]*SH_LOS[12]);
|
|
|
|
// Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated
|
|
for (uint8_t obsIndex=0; obsIndex<=1; obsIndex++) { // fuse X axis data first
|
|
// calculate range from ground plain to centre of sensor fov assuming flat earth
|
|
float range = constrain_float((heightAboveGndEst/Tnb_flow.c.z),rngOnGnd,1000.0f);
|
|
|
|
// calculate relative velocity in sensor frame
|
|
relVelSensor = Tnb_flow*stateStruct.velocity;
|
|
|
|
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes
|
|
losPred[0] = relVelSensor.y/range;
|
|
losPred[1] = -relVelSensor.x/range;
|
|
|
|
// calculate observation jacobians and Kalman gains
|
|
memset(&H_LOS[0], 0, sizeof(H_LOS));
|
|
if (obsIndex == 0) {
|
|
H_LOS[0] = SH_LOS[3]*SH_LOS[2]*SH_LOS[6]-SH_LOS[3]*SH_LOS[0]*SH_LOS[4];
|
|
H_LOS[1] = SH_LOS[3]*SH_LOS[2]*SH_LOS[5];
|
|
H_LOS[2] = SH_LOS[3]*SH_LOS[0]*SH_LOS[1];
|
|
H_LOS[3] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[11]-q1*q2*2.0f);
|
|
H_LOS[4] = -SH_LOS[3]*SH_LOS[0]*(SH_LOS[7]-SH_LOS[8]+SH_LOS[9]-SH_LOS[10]);
|
|
H_LOS[5] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[6];
|
|
H_LOS[8] = SH_LOS[2]*SH_LOS[0]*SH_LOS[13];
|
|
|
|
float t2 = SH_LOS[3];
|
|
float t3 = SH_LOS[0];
|
|
float t4 = SH_LOS[2];
|
|
float t5 = SH_LOS[6];
|
|
float t100 = t2 * t3 * t5;
|
|
float t6 = SH_LOS[4];
|
|
float t7 = t2*t3*t6;
|
|
float t9 = t2*t4*t5;
|
|
float t8 = t7-t9;
|
|
float t10 = q0*q3*2.0f;
|
|
float t21 = q1*q2*2.0f;
|
|
float t11 = t10-t21;
|
|
float t101 = t2 * t3 * t11;
|
|
float t12 = pd-ptd;
|
|
float t13 = 1.0f/(t12*t12);
|
|
float t104 = t3 * t4 * t13;
|
|
float t14 = SH_LOS[5];
|
|
float t102 = t2 * t4 * t14;
|
|
float t15 = SH_LOS[1];
|
|
float t103 = t2 * t3 * t15;
|
|
float t16 = q0*q0;
|
|
float t17 = q1*q1;
|
|
float t18 = q2*q2;
|
|
float t19 = q3*q3;
|
|
float t20 = t16-t17+t18-t19;
|
|
float t105 = t2 * t3 * t20;
|
|
float t22 = P[1][1]*t102;
|
|
float t23 = P[3][0]*t101;
|
|
float t24 = P[8][0]*t104;
|
|
float t25 = P[1][0]*t102;
|
|
float t26 = P[2][0]*t103;
|
|
float t63 = P[0][0]*t8;
|
|
float t64 = P[5][0]*t100;
|
|
float t65 = P[4][0]*t105;
|
|
float t27 = t23+t24+t25+t26-t63-t64-t65;
|
|
float t28 = P[3][3]*t101;
|
|
float t29 = P[8][3]*t104;
|
|
float t30 = P[1][3]*t102;
|
|
float t31 = P[2][3]*t103;
|
|
float t67 = P[0][3]*t8;
|
|
float t68 = P[5][3]*t100;
|
|
float t69 = P[4][3]*t105;
|
|
float t32 = t28+t29+t30+t31-t67-t68-t69;
|
|
float t33 = t101*t32;
|
|
float t34 = P[3][8]*t101;
|
|
float t35 = P[8][8]*t104;
|
|
float t36 = P[1][8]*t102;
|
|
float t37 = P[2][8]*t103;
|
|
float t70 = P[0][8]*t8;
|
|
float t71 = P[5][8]*t100;
|
|
float t72 = P[4][8]*t105;
|
|
float t38 = t34+t35+t36+t37-t70-t71-t72;
|
|
float t39 = t104*t38;
|
|
float t40 = P[3][1]*t101;
|
|
float t41 = P[8][1]*t104;
|
|
float t42 = P[2][1]*t103;
|
|
float t73 = P[0][1]*t8;
|
|
float t74 = P[5][1]*t100;
|
|
float t75 = P[4][1]*t105;
|
|
float t43 = t22+t40+t41+t42-t73-t74-t75;
|
|
float t44 = t102*t43;
|
|
float t45 = P[3][2]*t101;
|
|
float t46 = P[8][2]*t104;
|
|
float t47 = P[1][2]*t102;
|
|
float t48 = P[2][2]*t103;
|
|
float t76 = P[0][2]*t8;
|
|
float t77 = P[5][2]*t100;
|
|
float t78 = P[4][2]*t105;
|
|
float t49 = t45+t46+t47+t48-t76-t77-t78;
|
|
float t50 = t103*t49;
|
|
float t51 = P[3][5]*t101;
|
|
float t52 = P[8][5]*t104;
|
|
float t53 = P[1][5]*t102;
|
|
float t54 = P[2][5]*t103;
|
|
float t79 = P[0][5]*t8;
|
|
float t80 = P[5][5]*t100;
|
|
float t81 = P[4][5]*t105;
|
|
float t55 = t51+t52+t53+t54-t79-t80-t81;
|
|
float t56 = P[3][4]*t101;
|
|
float t57 = P[8][4]*t104;
|
|
float t58 = P[1][4]*t102;
|
|
float t59 = P[2][4]*t103;
|
|
float t83 = P[0][4]*t8;
|
|
float t84 = P[5][4]*t100;
|
|
float t85 = P[4][4]*t105;
|
|
float t60 = t56+t57+t58+t59-t83-t84-t85;
|
|
float t66 = t8*t27;
|
|
float t82 = t100*t55;
|
|
float t86 = t105*t60;
|
|
float t61 = R_LOS+t33+t39+t44+t50-t66-t82-t86;
|
|
float t62 = 1.0f/t61;
|
|
|
|
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
|
|
if (t61 > R_LOS) {
|
|
t62 = 1.0f/t61;
|
|
faultStatus.bad_yflow = false;
|
|
} else {
|
|
t61 = 0.0f;
|
|
t62 = 1.0f/R_LOS;
|
|
faultStatus.bad_yflow = true;
|
|
return;
|
|
}
|
|
varInnovOptFlow[0] = t61;
|
|
|
|
// calculate innovation for X axis observation
|
|
innovOptFlow[0] = losPred[0] - ofDataDelayed.flowRadXYcomp.x;
|
|
|
|
// calculate Kalman gains for X-axis observation
|
|
Kfusion[0] = t62*(-P[0][0]*t8-P[0][5]*t100+P[0][3]*t101+P[0][1]*t102+P[0][2]*t103+P[0][8]*t104-P[0][4]*t105);
|
|
Kfusion[1] = t62*(t22-P[1][0]*t8-P[1][5]*t100+P[1][3]*t101+P[1][2]*t103+P[1][8]*t104-P[1][4]*t105);
|
|
Kfusion[2] = t62*(t48-P[2][0]*t8-P[2][5]*t100+P[2][3]*t101+P[2][1]*t102+P[2][8]*t104-P[2][4]*t105);
|
|
Kfusion[3] = t62*(t28-P[3][0]*t8-P[3][5]*t100+P[3][1]*t102+P[3][2]*t103+P[3][8]*t104-P[3][4]*t105);
|
|
Kfusion[4] = t62*(-t85-P[4][0]*t8-P[4][5]*t100+P[4][3]*t101+P[4][1]*t102+P[4][2]*t103+P[4][8]*t104);
|
|
Kfusion[5] = t62*(-t80-P[5][0]*t8+P[5][3]*t101+P[5][1]*t102+P[5][2]*t103+P[5][8]*t104-P[5][4]*t105);
|
|
Kfusion[6] = t62*(-P[6][0]*t8-P[6][5]*t100+P[6][3]*t101+P[6][1]*t102+P[6][2]*t103+P[6][8]*t104-P[6][4]*t105);
|
|
Kfusion[7] = t62*(-P[7][0]*t8-P[7][5]*t100+P[7][3]*t101+P[7][1]*t102+P[7][2]*t103+P[7][8]*t104-P[7][4]*t105);
|
|
Kfusion[8] = t62*(t35-P[8][0]*t8-P[8][5]*t100+P[8][3]*t101+P[8][1]*t102+P[8][2]*t103-P[8][4]*t105);
|
|
Kfusion[9] = t62*(-P[9][0]*t8-P[9][5]*t100+P[9][3]*t101+P[9][1]*t102+P[9][2]*t103+P[9][8]*t104-P[9][4]*t105);
|
|
Kfusion[10] = t62*(-P[10][0]*t8-P[10][5]*t100+P[10][3]*t101+P[10][1]*t102+P[10][2]*t103+P[10][8]*t104-P[10][4]*t105);
|
|
Kfusion[11] = t62*(-P[11][0]*t8-P[11][5]*t100+P[11][3]*t101+P[11][1]*t102+P[11][2]*t103+P[11][8]*t104-P[11][4]*t105);
|
|
Kfusion[12] = t62*(-P[12][0]*t8-P[12][5]*t100+P[12][3]*t101+P[12][1]*t102+P[12][2]*t103+P[12][8]*t104-P[12][4]*t105);
|
|
Kfusion[13] = t62*(-P[13][0]*t8-P[13][5]*t100+P[13][3]*t101+P[13][1]*t102+P[13][2]*t103+P[13][8]*t104-P[13][4]*t105);
|
|
Kfusion[14] = t62*(-P[14][0]*t8-P[14][5]*t100+P[14][3]*t101+P[14][1]*t102+P[14][2]*t103+P[14][8]*t104-P[14][4]*t105);
|
|
Kfusion[15] = t62*(-P[15][0]*t8-P[15][5]*t100+P[15][3]*t101+P[15][1]*t102+P[15][2]*t103+P[15][8]*t104-P[15][4]*t105);
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = t62*(-P[22][0]*t8-P[22][5]*t100+P[22][3]*t101+P[22][1]*t102+P[22][2]*t103+P[22][8]*t104-P[22][4]*t105);
|
|
Kfusion[23] = t62*(-P[23][0]*t8-P[23][5]*t100+P[23][3]*t101+P[23][1]*t102+P[23][2]*t103+P[23][8]*t104-P[23][4]*t105);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = t62*(-P[16][0]*t8-P[16][5]*t100+P[16][3]*t101+P[16][1]*t102+P[16][2]*t103+P[16][8]*t104-P[16][4]*t105);
|
|
Kfusion[17] = t62*(-P[17][0]*t8-P[17][5]*t100+P[17][3]*t101+P[17][1]*t102+P[17][2]*t103+P[17][8]*t104-P[17][4]*t105);
|
|
Kfusion[18] = t62*(-P[18][0]*t8-P[18][5]*t100+P[18][3]*t101+P[18][1]*t102+P[18][2]*t103+P[18][8]*t104-P[18][4]*t105);
|
|
Kfusion[19] = t62*(-P[19][0]*t8-P[19][5]*t100+P[19][3]*t101+P[19][1]*t102+P[19][2]*t103+P[19][8]*t104-P[19][4]*t105);
|
|
Kfusion[20] = t62*(-P[20][0]*t8-P[20][5]*t100+P[20][3]*t101+P[20][1]*t102+P[20][2]*t103+P[20][8]*t104-P[20][4]*t105);
|
|
Kfusion[21] = t62*(-P[21][0]*t8-P[21][5]*t100+P[21][3]*t101+P[21][1]*t102+P[21][2]*t103+P[21][8]*t104-P[21][4]*t105);
|
|
} else {
|
|
for (uint8_t i = 16; i <= 21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
H_LOS[0] = -SH_LOS[3]*SH_LOS[6]*SH_LOS[1];
|
|
H_LOS[1] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[4]-SH_LOS[3]*SH_LOS[1]*SH_LOS[5];
|
|
H_LOS[2] = SH_LOS[3]*SH_LOS[2]*SH_LOS[0];
|
|
H_LOS[3] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[7]+SH_LOS[8]-SH_LOS[9]-SH_LOS[10]);
|
|
H_LOS[4] = SH_LOS[3]*SH_LOS[0]*(SH_LOS[11]+q1*q2*2.0f);
|
|
H_LOS[5] = -SH_LOS[3]*SH_LOS[0]*SH_LOS[5];
|
|
H_LOS[8] = -SH_LOS[0]*SH_LOS[1]*SH_LOS[13];
|
|
|
|
float t2 = SH_LOS[3];
|
|
float t3 = SH_LOS[0];
|
|
float t4 = SH_LOS[1];
|
|
float t5 = SH_LOS[5];
|
|
float t100 = t2 * t3 * t5;
|
|
float t6 = SH_LOS[4];
|
|
float t7 = t2*t3*t6;
|
|
float t8 = t2*t4*t5;
|
|
float t9 = t7+t8;
|
|
float t10 = q0*q3*2.0f;
|
|
float t11 = q1*q2*2.0f;
|
|
float t12 = t10+t11;
|
|
float t101 = t2 * t3 * t12;
|
|
float t13 = pd-ptd;
|
|
float t14 = 1.0f/(t13*t13);
|
|
float t104 = t3 * t4 * t14;
|
|
float t15 = SH_LOS[6];
|
|
float t105 = t2 * t4 * t15;
|
|
float t16 = SH_LOS[2];
|
|
float t102 = t2 * t3 * t16;
|
|
float t17 = q0*q0;
|
|
float t18 = q1*q1;
|
|
float t19 = q2*q2;
|
|
float t20 = q3*q3;
|
|
float t21 = t17+t18-t19-t20;
|
|
float t103 = t2 * t3 * t21;
|
|
float t22 = P[0][0]*t105;
|
|
float t23 = P[1][1]*t9;
|
|
float t24 = P[8][1]*t104;
|
|
float t25 = P[0][1]*t105;
|
|
float t26 = P[5][1]*t100;
|
|
float t64 = P[4][1]*t101;
|
|
float t65 = P[2][1]*t102;
|
|
float t66 = P[3][1]*t103;
|
|
float t27 = t23+t24+t25+t26-t64-t65-t66;
|
|
float t28 = t9*t27;
|
|
float t29 = P[1][4]*t9;
|
|
float t30 = P[8][4]*t104;
|
|
float t31 = P[0][4]*t105;
|
|
float t32 = P[5][4]*t100;
|
|
float t67 = P[4][4]*t101;
|
|
float t68 = P[2][4]*t102;
|
|
float t69 = P[3][4]*t103;
|
|
float t33 = t29+t30+t31+t32-t67-t68-t69;
|
|
float t34 = P[1][8]*t9;
|
|
float t35 = P[8][8]*t104;
|
|
float t36 = P[0][8]*t105;
|
|
float t37 = P[5][8]*t100;
|
|
float t71 = P[4][8]*t101;
|
|
float t72 = P[2][8]*t102;
|
|
float t73 = P[3][8]*t103;
|
|
float t38 = t34+t35+t36+t37-t71-t72-t73;
|
|
float t39 = t104*t38;
|
|
float t40 = P[1][0]*t9;
|
|
float t41 = P[8][0]*t104;
|
|
float t42 = P[5][0]*t100;
|
|
float t74 = P[4][0]*t101;
|
|
float t75 = P[2][0]*t102;
|
|
float t76 = P[3][0]*t103;
|
|
float t43 = t22+t40+t41+t42-t74-t75-t76;
|
|
float t44 = t105*t43;
|
|
float t45 = P[1][2]*t9;
|
|
float t46 = P[8][2]*t104;
|
|
float t47 = P[0][2]*t105;
|
|
float t48 = P[5][2]*t100;
|
|
float t63 = P[2][2]*t102;
|
|
float t77 = P[4][2]*t101;
|
|
float t78 = P[3][2]*t103;
|
|
float t49 = t45+t46+t47+t48-t63-t77-t78;
|
|
float t50 = P[1][5]*t9;
|
|
float t51 = P[8][5]*t104;
|
|
float t52 = P[0][5]*t105;
|
|
float t53 = P[5][5]*t100;
|
|
float t80 = P[4][5]*t101;
|
|
float t81 = P[2][5]*t102;
|
|
float t82 = P[3][5]*t103;
|
|
float t54 = t50+t51+t52+t53-t80-t81-t82;
|
|
float t55 = t100*t54;
|
|
float t56 = P[1][3]*t9;
|
|
float t57 = P[8][3]*t104;
|
|
float t58 = P[0][3]*t105;
|
|
float t59 = P[5][3]*t100;
|
|
float t83 = P[4][3]*t101;
|
|
float t84 = P[2][3]*t102;
|
|
float t85 = P[3][3]*t103;
|
|
float t60 = t56+t57+t58+t59-t83-t84-t85;
|
|
float t70 = t101*t33;
|
|
float t79 = t102*t49;
|
|
float t86 = t103*t60;
|
|
float t61 = R_LOS+t28+t39+t44+t55-t70-t79-t86;
|
|
float t62 = 1.0f/t61;
|
|
|
|
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
|
|
if (t61 > R_LOS) {
|
|
t62 = 1.0f/t61;
|
|
faultStatus.bad_yflow = false;
|
|
} else {
|
|
t61 = 0.0f;
|
|
t62 = 1.0f/R_LOS;
|
|
faultStatus.bad_yflow = true;
|
|
return;
|
|
}
|
|
varInnovOptFlow[1] = t61;
|
|
|
|
// calculate innovation for Y observation
|
|
innovOptFlow[1] = losPred[1] - ofDataDelayed.flowRadXYcomp.y;
|
|
|
|
// calculate Kalman gains for the Y-axis observation
|
|
Kfusion[0] = -t62*(t22+P[0][1]*t9+P[0][5]*t100-P[0][4]*t101-P[0][2]*t102-P[0][3]*t103+P[0][8]*t104);
|
|
Kfusion[1] = -t62*(t23+P[1][5]*t100+P[1][0]*t105-P[1][4]*t101-P[1][2]*t102-P[1][3]*t103+P[1][8]*t104);
|
|
Kfusion[2] = -t62*(-t63+P[2][1]*t9+P[2][5]*t100+P[2][0]*t105-P[2][4]*t101-P[2][3]*t103+P[2][8]*t104);
|
|
Kfusion[3] = -t62*(-t85+P[3][1]*t9+P[3][5]*t100+P[3][0]*t105-P[3][4]*t101-P[3][2]*t102+P[3][8]*t104);
|
|
Kfusion[4] = -t62*(-t67+P[4][1]*t9+P[4][5]*t100+P[4][0]*t105-P[4][2]*t102-P[4][3]*t103+P[4][8]*t104);
|
|
Kfusion[5] = -t62*(t53+P[5][1]*t9+P[5][0]*t105-P[5][4]*t101-P[5][2]*t102-P[5][3]*t103+P[5][8]*t104);
|
|
Kfusion[6] = -t62*(P[6][1]*t9+P[6][5]*t100+P[6][0]*t105-P[6][4]*t101-P[6][2]*t102-P[6][3]*t103+P[6][8]*t104);
|
|
Kfusion[7] = -t62*(P[7][1]*t9+P[7][5]*t100+P[7][0]*t105-P[7][4]*t101-P[7][2]*t102-P[7][3]*t103+P[7][8]*t104);
|
|
Kfusion[8] = -t62*(t35+P[8][1]*t9+P[8][5]*t100+P[8][0]*t105-P[8][4]*t101-P[8][2]*t102-P[8][3]*t103);
|
|
Kfusion[9] = -t62*(P[9][1]*t9+P[9][5]*t100+P[9][0]*t105-P[9][4]*t101-P[9][2]*t102-P[9][3]*t103+P[9][8]*t104);
|
|
Kfusion[10] = -t62*(P[10][1]*t9+P[10][5]*t100+P[10][0]*t105-P[10][4]*t101-P[10][2]*t102-P[10][3]*t103+P[10][8]*t104);
|
|
Kfusion[11] = -t62*(P[11][1]*t9+P[11][5]*t100+P[11][0]*t105-P[11][4]*t101-P[11][2]*t102-P[11][3]*t103+P[11][8]*t104);
|
|
Kfusion[12] = -t62*(P[12][1]*t9+P[12][5]*t100+P[12][0]*t105-P[12][4]*t101-P[12][2]*t102-P[12][3]*t103+P[12][8]*t104);
|
|
Kfusion[13] = -t62*(P[13][1]*t9+P[13][5]*t100+P[13][0]*t105-P[13][4]*t101-P[13][2]*t102-P[13][3]*t103+P[13][8]*t104);
|
|
Kfusion[14] = -t62*(P[14][1]*t9+P[14][5]*t100+P[14][0]*t105-P[14][4]*t101-P[14][2]*t102-P[14][3]*t103+P[14][8]*t104);
|
|
Kfusion[15] = -t62*(P[15][1]*t9+P[15][5]*t100+P[15][0]*t105-P[15][4]*t101-P[15][2]*t102-P[15][3]*t103+P[15][8]*t104);
|
|
if (!inhibitWindStates) {
|
|
Kfusion[22] = -t62*(P[22][1]*t9+P[22][5]*t100+P[22][0]*t105-P[22][4]*t101-P[22][2]*t102-P[22][3]*t103+P[22][8]*t104);
|
|
Kfusion[23] = -t62*(P[23][1]*t9+P[23][5]*t100+P[23][0]*t105-P[23][4]*t101-P[23][2]*t102-P[23][3]*t103+P[23][8]*t104);
|
|
} else {
|
|
Kfusion[22] = 0.0f;
|
|
Kfusion[23] = 0.0f;
|
|
}
|
|
if (!inhibitMagStates) {
|
|
Kfusion[16] = -t62*(P[16][1]*t9+P[16][5]*t100+P[16][0]*t105-P[16][4]*t101-P[16][2]*t102-P[16][3]*t103+P[16][8]*t104);
|
|
Kfusion[17] = -t62*(P[17][1]*t9+P[17][5]*t100+P[17][0]*t105-P[17][4]*t101-P[17][2]*t102-P[17][3]*t103+P[17][8]*t104);
|
|
Kfusion[18] = -t62*(P[18][1]*t9+P[18][5]*t100+P[18][0]*t105-P[18][4]*t101-P[18][2]*t102-P[18][3]*t103+P[18][8]*t104);
|
|
Kfusion[19] = -t62*(P[19][1]*t9+P[19][5]*t100+P[19][0]*t105-P[19][4]*t101-P[19][2]*t102-P[19][3]*t103+P[19][8]*t104);
|
|
Kfusion[20] = -t62*(P[20][1]*t9+P[20][5]*t100+P[20][0]*t105-P[20][4]*t101-P[20][2]*t102-P[20][3]*t103+P[20][8]*t104);
|
|
Kfusion[21] = -t62*(P[21][1]*t9+P[21][5]*t100+P[21][0]*t105-P[21][4]*t101-P[21][2]*t102-P[21][3]*t103+P[21][8]*t104);
|
|
} else {
|
|
for (uint8_t i = 16; i <= 21; i++) {
|
|
Kfusion[i] = 0.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculate the innovation consistency test ratio
|
|
flowTestRatio[obsIndex] = sq(innovOptFlow[obsIndex]) / (sq(MAX(0.01f * (float)frontend->_flowInnovGate, 1.0f)) * varInnovOptFlow[obsIndex]);
|
|
|
|
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
|
|
if ((flowTestRatio[obsIndex]) < 1.0f && (ofDataDelayed.flowRadXY.x < frontend->_maxFlowRate) && (ofDataDelayed.flowRadXY.y < frontend->_maxFlowRate)) {
|
|
// record the last time observations were accepted for fusion
|
|
prevFlowFuseTime_ms = imuSampleTime_ms;
|
|
|
|
// correct the covariance P = (I - K*H)*P
|
|
// take advantage of the empty columns in KH to reduce the
|
|
// number of operations
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
for (unsigned j = 0; j<=5; j++) {
|
|
KH[i][j] = Kfusion[i] * H_LOS[j];
|
|
}
|
|
for (unsigned j = 6; j<=7; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
KH[i][8] = Kfusion[i] * H_LOS[8];
|
|
for (unsigned j = 9; j<=23; j++) {
|
|
KH[i][j] = 0.0f;
|
|
}
|
|
}
|
|
for (unsigned j = 0; j<=stateIndexLim; j++) {
|
|
for (unsigned i = 0; i<=stateIndexLim; i++) {
|
|
ftype res = 0;
|
|
res += KH[i][0] * P[0][j];
|
|
res += KH[i][1] * P[1][j];
|
|
res += KH[i][2] * P[2][j];
|
|
res += KH[i][3] * P[3][j];
|
|
res += KH[i][4] * P[4][j];
|
|
res += KH[i][5] * P[5][j];
|
|
res += KH[i][8] * P[8][j];
|
|
KHP[i][j] = res;
|
|
}
|
|
}
|
|
|
|
// Check that we are not going to drive any variances negative and skip the update if so
|
|
bool healthyFusion = true;
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
if (KHP[i][i] > P[i][i]) {
|
|
healthyFusion = false;
|
|
}
|
|
}
|
|
|
|
if (healthyFusion) {
|
|
// update the covariance matrix
|
|
for (uint8_t i= 0; i<=stateIndexLim; i++) {
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
P[i][j] = P[i][j] - KHP[i][j];
|
|
}
|
|
}
|
|
|
|
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
|
|
ForceSymmetry();
|
|
ConstrainVariances();
|
|
|
|
// zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
|
|
stateStruct.angErr.zero();
|
|
|
|
// correct the state vector
|
|
for (uint8_t j= 0; j<=stateIndexLim; j++) {
|
|
statesArray[j] = statesArray[j] - Kfusion[j] * innovOptFlow[obsIndex];
|
|
}
|
|
|
|
// the first 3 states represent the angular misalignment vector. This is
|
|
// is used to correct the estimated quaternion on the current time step
|
|
stateStruct.quat.rotate(stateStruct.angErr);
|
|
|
|
} else {
|
|
// record bad axis
|
|
if (obsIndex == 0) {
|
|
faultStatus.bad_xflow = true;
|
|
} else if (obsIndex == 1) {
|
|
faultStatus.bad_yflow = true;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* MISC FUNCTIONS *
|
|
********************************************************/
|
|
|
|
#endif // HAL_CPU_CLASS
|