Ardupilot2/libraries/AC_AutoTune/AC_AutoTune_Multi.cpp

1179 lines
51 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
support for autotune of multirotors. Based on original autotune code from ArduCopter, written by Leonard Hall
Converted to a library by Andrew Tridgell
*/
#define AUTOTUNE_RD_STEP 0.05f // minimum increment when increasing/decreasing Rate D term
#define AUTOTUNE_RP_STEP 0.05f // minimum increment when increasing/decreasing Rate P term
#define AUTOTUNE_SP_STEP 0.05f // minimum increment when increasing/decreasing Stab P term
#define AUTOTUNE_PI_RATIO_FOR_TESTING 0.1f // I is set 10x smaller than P during testing
#define AUTOTUNE_PI_RATIO_FINAL 1.0f // I is set 1x P after testing
#define AUTOTUNE_YAW_PI_RATIO_FINAL 0.1f // I is set 1x P after testing
#define AUTOTUNE_RD_MAX 0.200f // maximum Rate D value
#define AUTOTUNE_RLPF_MIN 1.0f // minimum Rate Yaw filter value
#define AUTOTUNE_RLPF_MAX 5.0f // maximum Rate Yaw filter value
#define AUTOTUNE_RP_MIN 0.01f // minimum Rate P value
#define AUTOTUNE_RP_MAX 2.0f // maximum Rate P value
#define AUTOTUNE_SP_MAX 20.0f // maximum Stab P value
#define AUTOTUNE_SP_MIN 0.5f // maximum Stab P value
#define AUTOTUNE_D_UP_DOWN_MARGIN 0.2f // The margin below the target that we tune D in
#define AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS 4500 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_RATE_RLLPIT_CDS 18000 // target roll/pitch rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_RATE_YAW_CDS 9000 // target yaw rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD 500 // minimum target angle during TESTING_RATE step that will cause us to move to next step
#define AUTOTUNE_TARGET_MIN_RATE_YAW_CDS 1500 // minimum target yaw rate during AUTOTUNE_STEP_TWITCHING step
#define AUTOTUNE_Y_FILT_FREQ 10.0f // Autotune filter frequency when testing Yaw
#define AUTOTUNE_RD_BACKOFF 1.0f // Rate D gains are reduced to 50% of their maximum value discovered during tuning
#define AUTOTUNE_RP_BACKOFF 1.0f // Rate P gains are reduced to 97.5% of their maximum value discovered during tuning
#define AUTOTUNE_ACCEL_RP_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_ACCEL_Y_BACKOFF 1.0f // back off from maximum acceleration
#define AUTOTUNE_RP_ACCEL_MIN 4000.0f // Minimum acceleration for Roll and Pitch
#define AUTOTUNE_Y_ACCEL_MIN 1000.0f // Minimum acceleration for Yaw
#define AUTOTUNE_SP_BACKOFF 0.9f // Stab P gains are reduced to 90% of their maximum value discovered during tuning
#include "AC_AutoTune_Multi.h"
const AP_Param::GroupInfo AC_AutoTune_Multi::var_info[] = {
// @Param: AXES
// @DisplayName: Autotune axis bitmask
// @Description: 1-byte bitmap of axes to autotune
// @Bitmask: 0:Roll,1:Pitch,2:Yaw
// @User: Standard
AP_GROUPINFO("AXES", 1, AC_AutoTune_Multi, axis_bitmask, 7), // AUTOTUNE_AXIS_BITMASK_DEFAULT
// @Param: AGGR
// @DisplayName: Autotune aggressiveness
// @Description: Autotune aggressiveness. Defines the bounce back used to detect size of the D term.
// @Range: 0.05 0.10
// @User: Standard
AP_GROUPINFO("AGGR", 2, AC_AutoTune_Multi, aggressiveness, 0.1f),
// @Param: MIN_D
// @DisplayName: AutoTune minimum D
// @Description: Defines the minimum D gain
// @Range: 0.001 0.006
// @User: Standard
AP_GROUPINFO("MIN_D", 3, AC_AutoTune_Multi, min_d, 0.001f),
AP_GROUPEND
};
// constructor
AC_AutoTune_Multi::AC_AutoTune_Multi()
{
tune_seq[0] = TUNE_COMPLETE;
AP_Param::setup_object_defaults(this, var_info);
}
void AC_AutoTune_Multi::do_gcs_announcements()
{
const uint32_t now = AP_HAL::millis();
if (now - announce_time < AUTOTUNE_ANNOUNCE_INTERVAL_MS) {
return;
}
float tune_rp = 0.0f;
float tune_rd = 0.0f;
float tune_sp = 0.0f;
float tune_accel = 0.0f;
char axis_char = '?';
switch (axis) {
case ROLL:
tune_rp = tune_roll_rp;
tune_rd = tune_roll_rd;
tune_sp = tune_roll_sp;
tune_accel = tune_roll_accel;
axis_char = 'R';
break;
case PITCH:
tune_rp = tune_pitch_rp;
tune_rd = tune_pitch_rd;
tune_sp = tune_pitch_sp;
tune_accel = tune_pitch_accel;
axis_char = 'P';
break;
case YAW:
tune_rp = tune_yaw_rp;
tune_rd = tune_yaw_rLPF;
tune_sp = tune_yaw_sp;
tune_accel = tune_yaw_accel;
axis_char = 'Y';
break;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: (%c) %s", axis_char, type_string());
send_step_string();
if (!is_zero(lean_angle)) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: lean=%f target=%f", (double)lean_angle, (double)target_angle);
}
if (!is_zero(rotation_rate)) {
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: rotation=%f target=%f", (double)(rotation_rate*0.01f), (double)(target_rate*0.01f));
}
switch (tune_type) {
case RD_UP:
case RD_DOWN:
case RP_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f d=%f", (double)tune_rp, (double)tune_rd);
break;
case RFF_UP:
break;
case SP_DOWN:
case SP_UP:
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: p=%f accel=%f", (double)tune_sp, (double)tune_accel);
break;
case MAX_GAINS:
case TUNE_COMPLETE:
break;
}
gcs().send_text(MAV_SEVERITY_INFO, "AutoTune: success %u/%u", counter, AUTOTUNE_SUCCESS_COUNT);
announce_time = now;
}
void AC_AutoTune_Multi::test_init()
{
twitch_test_init();
}
void AC_AutoTune_Multi::test_run(AxisType test_axis, const float dir_sign)
{
twitch_test_run(test_axis, dir_sign);
}
// backup_gains_and_initialise - store current gains as originals
// called before tuning starts to backup original gains
void AC_AutoTune_Multi::backup_gains_and_initialise()
{
AC_AutoTune::backup_gains_and_initialise();
aggressiveness = constrain_float(aggressiveness, 0.05f, 0.2f);
orig_bf_feedforward = attitude_control->get_bf_feedforward();
// backup original pids and initialise tuned pid values
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_fltt = attitude_control->get_rate_roll_pid().filt_T_hz();
orig_roll_smax = attitude_control->get_rate_roll_pid().slew_limit();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
tune_roll_rp = attitude_control->get_rate_roll_pid().kP();
tune_roll_rd = attitude_control->get_rate_roll_pid().kD();
tune_roll_sp = attitude_control->get_angle_roll_p().kP();
tune_roll_accel = attitude_control->get_accel_roll_max_cdss();
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_fltt = attitude_control->get_rate_pitch_pid().filt_T_hz();
orig_pitch_smax = attitude_control->get_rate_pitch_pid().slew_limit();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
tune_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
tune_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
tune_pitch_sp = attitude_control->get_angle_pitch_p().kP();
tune_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_fltt = attitude_control->get_rate_yaw_pid().filt_T_hz();
orig_yaw_smax = attitude_control->get_rate_yaw_pid().slew_limit();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
tune_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
tune_yaw_sp = attitude_control->get_angle_yaw_p().kP();
tune_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
AP::logger().Write_Event(LogEvent::AUTOTUNE_INITIALISED);
}
// load_orig_gains - set gains to their original values
// called by stop and failed functions
void AC_AutoTune_Multi::load_orig_gains()
{
attitude_control->bf_feedforward(orig_bf_feedforward);
if (roll_enabled()) {
if (!is_zero(orig_roll_rp)) {
attitude_control->get_rate_roll_pid().kP(orig_roll_rp);
attitude_control->get_rate_roll_pid().kI(orig_roll_ri);
attitude_control->get_rate_roll_pid().kD(orig_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_angle_roll_p().kP(orig_roll_sp);
attitude_control->set_accel_roll_max_cdss(orig_roll_accel);
}
}
if (pitch_enabled()) {
if (!is_zero(orig_pitch_rp)) {
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(orig_pitch_ri);
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp);
attitude_control->set_accel_pitch_max_cdss(orig_pitch_accel);
}
}
if (yaw_enabled()) {
if (!is_zero(orig_yaw_rp)) {
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(orig_yaw_ri);
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp);
attitude_control->set_accel_yaw_max_cdss(orig_yaw_accel);
}
}
}
// load_tuned_gains - load tuned gains
void AC_AutoTune_Multi::load_tuned_gains()
{
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward(true);
attitude_control->set_accel_roll_max_cdss(0.0f);
attitude_control->set_accel_pitch_max_cdss(0.0f);
}
if (roll_enabled()) {
if (!is_zero(tune_roll_rp)) {
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->set_accel_roll_max_cdss(tune_roll_accel);
}
}
if (pitch_enabled()) {
if (!is_zero(tune_pitch_rp)) {
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->set_accel_pitch_max_cdss(tune_pitch_accel);
}
}
if (yaw_enabled()) {
if (!is_zero(tune_yaw_rp)) {
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
attitude_control->get_rate_yaw_pid().kD(0.0f);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->set_accel_yaw_max_cdss(tune_yaw_accel);
}
}
}
// load_intra_test_gains - gains used between tests
// called during testing mode's update-gains step to set gains ahead of return-to-level step
void AC_AutoTune_Multi::load_intra_test_gains()
{
// we are restarting tuning so reset gains to tuning-start gains (i.e. low I term)
// sanity check the gains
attitude_control->bf_feedforward(true);
if (roll_enabled()) {
attitude_control->get_rate_roll_pid().kP(orig_roll_rp);
attitude_control->get_rate_roll_pid().kI(orig_roll_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
attitude_control->get_rate_roll_pid().kD(orig_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_angle_roll_p().kP(orig_roll_sp);
}
if (pitch_enabled()) {
attitude_control->get_rate_pitch_pid().kP(orig_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(orig_pitch_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
attitude_control->get_rate_pitch_pid().kD(orig_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_angle_pitch_p().kP(orig_pitch_sp);
}
if (yaw_enabled()) {
attitude_control->get_rate_yaw_pid().kP(orig_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(orig_yaw_rp*AUTOTUNE_PI_RATIO_FOR_TESTING);
attitude_control->get_rate_yaw_pid().kD(orig_yaw_rd);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_rate_yaw_pid().filt_E_hz(orig_yaw_rLPF);
attitude_control->get_angle_yaw_p().kP(orig_yaw_sp);
}
}
// load_test_gains - load the to-be-tested gains for a single axis
// called by control_attitude() just before it beings testing a gain (i.e. just before it twitches)
void AC_AutoTune_Multi::load_test_gains()
{
switch (axis) {
case ROLL:
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*0.01f);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(0.0f);
attitude_control->get_rate_roll_pid().filt_T_hz(0.0f);
attitude_control->get_rate_roll_pid().slew_limit(0.0f);
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
break;
case PITCH:
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*0.01f);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(0.0f);
attitude_control->get_rate_pitch_pid().filt_T_hz(0.0f);
attitude_control->get_rate_pitch_pid().slew_limit(0.0f);
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
break;
case YAW:
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*0.01f);
attitude_control->get_rate_yaw_pid().kD(0.0f);
attitude_control->get_rate_yaw_pid().ff(0.0f);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_rate_yaw_pid().filt_T_hz(0.0f);
attitude_control->get_rate_yaw_pid().slew_limit(0.0f);
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
break;
}
}
// save_tuning_gains - save the final tuned gains for each axis
// save discovered gains to eeprom if autotuner is enabled (i.e. switch is in the high position)
void AC_AutoTune_Multi::save_tuning_gains()
{
// see if we successfully completed tuning of at least one axis
if (axes_completed == 0) {
return;
}
if (!attitude_control->get_bf_feedforward()) {
attitude_control->bf_feedforward_save(true);
attitude_control->save_accel_roll_max_cdss(0.0f);
attitude_control->save_accel_pitch_max_cdss(0.0f);
}
// sanity check the rate P values
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_ROLL) && roll_enabled() && !is_zero(tune_roll_rp)) {
// rate roll gains
attitude_control->get_rate_roll_pid().kP(tune_roll_rp);
attitude_control->get_rate_roll_pid().kI(tune_roll_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_roll_pid().kD(tune_roll_rd);
attitude_control->get_rate_roll_pid().ff(orig_roll_rff);
attitude_control->get_rate_roll_pid().filt_T_hz(orig_roll_fltt);
attitude_control->get_rate_roll_pid().slew_limit(orig_roll_smax);
attitude_control->get_rate_roll_pid().save_gains();
// stabilize roll
attitude_control->get_angle_roll_p().kP(tune_roll_sp);
attitude_control->get_angle_roll_p().save_gains();
// acceleration roll
attitude_control->save_accel_roll_max_cdss(tune_roll_accel);
// resave pids to originals in case the autotune is run again
orig_roll_rp = attitude_control->get_rate_roll_pid().kP();
orig_roll_ri = attitude_control->get_rate_roll_pid().kI();
orig_roll_rd = attitude_control->get_rate_roll_pid().kD();
orig_roll_rff = attitude_control->get_rate_roll_pid().ff();
orig_roll_sp = attitude_control->get_angle_roll_p().kP();
orig_roll_accel = attitude_control->get_accel_roll_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_PITCH) && pitch_enabled() && !is_zero(tune_pitch_rp)) {
// rate pitch gains
attitude_control->get_rate_pitch_pid().kP(tune_pitch_rp);
attitude_control->get_rate_pitch_pid().kI(tune_pitch_rp*AUTOTUNE_PI_RATIO_FINAL);
attitude_control->get_rate_pitch_pid().kD(tune_pitch_rd);
attitude_control->get_rate_pitch_pid().ff(orig_pitch_rff);
attitude_control->get_rate_pitch_pid().filt_T_hz(orig_pitch_fltt);
attitude_control->get_rate_pitch_pid().slew_limit(orig_pitch_smax);
attitude_control->get_rate_pitch_pid().save_gains();
// stabilize pitch
attitude_control->get_angle_pitch_p().kP(tune_pitch_sp);
attitude_control->get_angle_pitch_p().save_gains();
// acceleration pitch
attitude_control->save_accel_pitch_max_cdss(tune_pitch_accel);
// resave pids to originals in case the autotune is run again
orig_pitch_rp = attitude_control->get_rate_pitch_pid().kP();
orig_pitch_ri = attitude_control->get_rate_pitch_pid().kI();
orig_pitch_rd = attitude_control->get_rate_pitch_pid().kD();
orig_pitch_rff = attitude_control->get_rate_pitch_pid().ff();
orig_pitch_sp = attitude_control->get_angle_pitch_p().kP();
orig_pitch_accel = attitude_control->get_accel_pitch_max_cdss();
}
if ((axes_completed & AUTOTUNE_AXIS_BITMASK_YAW) && yaw_enabled() && !is_zero(tune_yaw_rp)) {
// rate yaw gains
attitude_control->get_rate_yaw_pid().kP(tune_yaw_rp);
attitude_control->get_rate_yaw_pid().kI(tune_yaw_rp*AUTOTUNE_YAW_PI_RATIO_FINAL);
attitude_control->get_rate_yaw_pid().kD(0.0f);
attitude_control->get_rate_yaw_pid().ff(orig_yaw_rff);
attitude_control->get_rate_yaw_pid().filt_T_hz(orig_yaw_fltt);
attitude_control->get_rate_yaw_pid().slew_limit(orig_yaw_smax);
attitude_control->get_rate_yaw_pid().filt_E_hz(tune_yaw_rLPF);
attitude_control->get_rate_yaw_pid().save_gains();
// stabilize yaw
attitude_control->get_angle_yaw_p().kP(tune_yaw_sp);
attitude_control->get_angle_yaw_p().save_gains();
// acceleration yaw
attitude_control->save_accel_yaw_max_cdss(tune_yaw_accel);
// resave pids to originals in case the autotune is run again
orig_yaw_rp = attitude_control->get_rate_yaw_pid().kP();
orig_yaw_ri = attitude_control->get_rate_yaw_pid().kI();
orig_yaw_rd = attitude_control->get_rate_yaw_pid().kD();
orig_yaw_rff = attitude_control->get_rate_yaw_pid().ff();
orig_yaw_rLPF = attitude_control->get_rate_yaw_pid().filt_E_hz();
orig_yaw_sp = attitude_control->get_angle_yaw_p().kP();
orig_yaw_accel = attitude_control->get_accel_yaw_max_cdss();
}
// update GCS and log save gains event
update_gcs(AUTOTUNE_MESSAGE_SAVED_GAINS);
AP::logger().Write_Event(LogEvent::AUTOTUNE_SAVEDGAINS);
reset();
}
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void AC_AutoTune_Multi::twitching_test_rate(float rate, float rate_target_max, float &meas_rate_min, float &meas_rate_max)
{
const uint32_t now = AP_HAL::millis();
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is continuing to increase without stopping
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum measurement after the measurement has peaked (aka "bounce back")
if ((rate < meas_rate_min) && (meas_rate_max > rate_target_max * 0.5f)) {
// the measurement is bouncing back
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 75%
if (meas_rate_max < rate_target_max * 0.75f) {
// the measurement not reached the 75% threshold yet
step_time_limit_ms = (now - step_start_time_ms) * 3;
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_rate_max > rate_target_max) {
// the measured rate has passed the maximum target rate
step = UPDATE_GAINS;
}
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) {
// the measurement has passed 50% of the maximum rate and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
if (now - step_start_time_ms >= step_time_limit_ms) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_test_rate - twitching tests
// update min and max and test for end conditions
void AC_AutoTune_Multi::twitching_abort_rate(float angle, float rate, float angle_max, float meas_rate_min)
{
if (angle >= angle_max) {
if (is_equal(rate, meas_rate_min) && step_scaler > 0.5f) {
// we have reached the angle limit before completing the measurement of maximum and minimum
// reduce the maximum target rate
step_scaler *= 0.9f;
// ignore result and start test again
step = WAITING_FOR_LEVEL;
} else {
step = UPDATE_GAINS;
}
}
}
// twitching_test_angle - twitching tests
// update min and max and test for end conditions
void AC_AutoTune_Multi::twitching_test_angle(float angle, float rate, float angle_target_max, float &meas_angle_min, float &meas_angle_max, float &meas_rate_min, float &meas_rate_max)
{
const uint32_t now = AP_HAL::millis();
// capture maximum angle
if (angle > meas_angle_max) {
// the angle still increasing
meas_angle_max = angle;
meas_angle_min = angle;
}
// capture minimum angle after we have reached a reasonable maximum angle
if ((angle < meas_angle_min) && (meas_angle_max > angle_target_max * 0.5f)) {
// the measurement is bouncing back
meas_angle_min = angle;
}
// capture maximum rate
if (rate > meas_rate_max) {
// the measurement is still increasing
meas_rate_max = rate;
meas_rate_min = rate;
}
// capture minimum rate after we have reached maximum rate
if (rate < meas_rate_min) {
// the measurement is still decreasing
meas_rate_min = rate;
}
// calculate early stopping time based on the time it takes to get to 75%
if (meas_angle_max < angle_target_max * 0.75f) {
// the measurement not reached the 75% threshold yet
step_time_limit_ms = (now - step_start_time_ms) * 3;
step_time_limit_ms = MIN(step_time_limit_ms, AUTOTUNE_TESTING_STEP_TIMEOUT_MS);
}
if (meas_angle_max > angle_target_max) {
// the measurement has passed the maximum angle
step = UPDATE_GAINS;
}
if (meas_angle_max-meas_angle_min > meas_angle_max*aggressiveness) {
// the measurement has passed 50% of the maximum angle and bounce back is larger than the threshold
step = UPDATE_GAINS;
}
if (now - step_start_time_ms >= step_time_limit_ms) {
// we have passed the maximum stop time
step = UPDATE_GAINS;
}
}
// twitching_measure_acceleration - measure rate of change of measurement
void AC_AutoTune_Multi::twitching_measure_acceleration(float &rate_of_change, float rate_measurement, float &rate_measurement_max) const
{
if (rate_measurement_max < rate_measurement) {
rate_measurement_max = rate_measurement;
rate_of_change = (1000.0f*rate_measurement_max)/(AP_HAL::millis() - step_start_time_ms);
}
}
// update gains for the rate p up tune type
void AC_AutoTune_Multi::updating_rate_p_up_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_rate_p_up_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_rate_p_up_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_rate_p_up_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
}
// update gains for the rate d up tune type
void AC_AutoTune_Multi::updating_rate_d_up_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_rate_d_up(tune_roll_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_rate_d_up(tune_pitch_rd, min_d, AUTOTUNE_RD_MAX, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_rate_d_up(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RLPF_MAX, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
}
// update gains for the rate d down tune type
void AC_AutoTune_Multi::updating_rate_d_down_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_rate_d_down(tune_roll_rd, min_d, AUTOTUNE_RD_STEP, tune_roll_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case PITCH:
updating_rate_d_down(tune_pitch_rd, min_d, AUTOTUNE_RD_STEP, tune_pitch_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
case YAW:
updating_rate_d_down(tune_yaw_rLPF, AUTOTUNE_RLPF_MIN, AUTOTUNE_RD_STEP, tune_yaw_rp, AUTOTUNE_RP_MIN, AUTOTUNE_RP_MAX, AUTOTUNE_RP_STEP, target_rate, test_rate_min, test_rate_max);
break;
}
}
// update gains for the angle p up tune type
void AC_AutoTune_Multi::updating_angle_p_up_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_angle_p_up(tune_roll_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case PITCH:
updating_angle_p_up(tune_pitch_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case YAW:
updating_angle_p_up(tune_yaw_sp, AUTOTUNE_SP_MAX, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
}
}
// update gains for the angle p down tune type
void AC_AutoTune_Multi::updating_angle_p_down_all(AxisType test_axis)
{
switch (test_axis) {
case ROLL:
updating_angle_p_down(tune_roll_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case PITCH:
updating_angle_p_down(tune_pitch_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
case YAW:
updating_angle_p_down(tune_yaw_sp, AUTOTUNE_SP_MIN, AUTOTUNE_SP_STEP, target_angle, test_angle_max, test_rate_min, test_rate_max);
break;
}
}
// set gains post tune for the tune type
void AC_AutoTune_Multi::set_gains_post_tune(AxisType test_axis)
{
switch (tune_type) {
case RD_UP:
break;
case RD_DOWN:
switch (test_axis) {
case ROLL:
tune_roll_rd = MAX(min_d, tune_roll_rd * AUTOTUNE_RD_BACKOFF);
tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RD_BACKOFF);
break;
case PITCH:
tune_pitch_rd = MAX(min_d, tune_pitch_rd * AUTOTUNE_RD_BACKOFF);
tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RD_BACKOFF);
break;
case YAW:
tune_yaw_rLPF = MAX(AUTOTUNE_RLPF_MIN, tune_yaw_rLPF * AUTOTUNE_RD_BACKOFF);
tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RD_BACKOFF);
break;
}
break;
case RP_UP:
switch (test_axis) {
case ROLL:
tune_roll_rp = MAX(AUTOTUNE_RP_MIN, tune_roll_rp * AUTOTUNE_RP_BACKOFF);
break;
case PITCH:
tune_pitch_rp = MAX(AUTOTUNE_RP_MIN, tune_pitch_rp * AUTOTUNE_RP_BACKOFF);
break;
case YAW:
tune_yaw_rp = MAX(AUTOTUNE_RP_MIN, tune_yaw_rp * AUTOTUNE_RP_BACKOFF);
break;
}
break;
case SP_DOWN:
break;
case SP_UP:
switch (test_axis) {
case ROLL:
tune_roll_sp = MAX(AUTOTUNE_SP_MIN, tune_roll_sp * AUTOTUNE_SP_BACKOFF);
tune_roll_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
break;
case PITCH:
tune_pitch_sp = MAX(AUTOTUNE_SP_MIN, tune_pitch_sp * AUTOTUNE_SP_BACKOFF);
tune_pitch_accel = MAX(AUTOTUNE_RP_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_RP_BACKOFF);
break;
case YAW:
tune_yaw_sp = MAX(AUTOTUNE_SP_MIN, tune_yaw_sp * AUTOTUNE_SP_BACKOFF);
tune_yaw_accel = MAX(AUTOTUNE_Y_ACCEL_MIN, test_accel_max * AUTOTUNE_ACCEL_Y_BACKOFF);
break;
}
break;
case RFF_UP:
case MAX_GAINS:
case TUNE_COMPLETE:
break;
}
}
// updating_rate_d_up - increase D and adjust P to optimize the D term for a little bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void AC_AutoTune_Multi::updating_rate_d_up(float &tune_d, float tune_d_min, float tune_d_max, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (meas_rate_max > rate_target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
if (tune_p < tune_p_min) {
// P gain is at minimum so start reducing D
tune_p = tune_p_min;
tune_d -= tune_d*tune_d_step_ratio;
if (tune_d <= tune_d_min) {
// We have reached minimum D gain so stop tuning
tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
// we have a good measurement of bounce back
if (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// bounce back is bigger than our threshold so increment the success counter
counter++;
} else {
if (ignore_next == false) {
// bounce back is smaller than our threshold so decrement the success counter
if (counter > 0) {
counter--;
}
// increase D gain (which should increase bounce back)
tune_d += tune_d*tune_d_step_ratio*2.0f;
// stop tuning if we hit maximum D
if (tune_d >= tune_d_max) {
tune_d = tune_d_max;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
ignore_next = false;
}
}
}
}
// updating_rate_d_down - decrease D and adjust P to optimize the D term for no bounce back
// optimize D term while keeping the maximum just below the target by adjusting P
void AC_AutoTune_Multi::updating_rate_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (meas_rate_max > rate_target) {
// if maximum measurement was higher than target
// reduce P gain (which should reduce maximum)
tune_p -= tune_p*tune_p_step_ratio;
if (tune_p < tune_p_min) {
// P gain is at minimum so start reducing D gain
tune_p = tune_p_min;
tune_d -= tune_d*tune_d_step_ratio;
if (tune_d <= tune_d_min) {
// We have reached minimum D so stop tuning
tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
} else if ((meas_rate_max < rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (tune_p <= tune_p_max)) {
// we have not achieved a high enough maximum to get a good measurement of bounce back.
// increase P gain (which should increase maximum)
tune_p += tune_p*tune_p_step_ratio;
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
// we have a good measurement of bounce back
if (meas_rate_max-meas_rate_min < meas_rate_max*aggressiveness) {
if (ignore_next == false) {
// bounce back is less than our threshold so increment the success counter
counter++;
} else {
ignore_next = false;
}
} else {
// ignore the next result unless it is the same as this one
ignore_next = true;
// bounce back is larger than our threshold so decrement the success counter
if (counter > 0) {
counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// stop tuning if we hit minimum D
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
}
}
// updating_rate_p_up_d_down - increase P to ensure the target is reached while checking bounce back isn't increasing
// P is increased until we achieve our target within a reasonable time while reducing D if bounce back increases above the threshold
void AC_AutoTune_Multi::updating_rate_p_up_d_down(float &tune_d, float tune_d_min, float tune_d_step_ratio, float &tune_p, float tune_p_min, float tune_p_max, float tune_p_step_ratio, float rate_target, float meas_rate_min, float meas_rate_max)
{
if (meas_rate_max > rate_target*(1+0.5f*aggressiveness)) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was greater than target so increment the success counter
counter++;
} else if ((meas_rate_max < rate_target) && (meas_rate_max > rate_target*(1.0f-AUTOTUNE_D_UP_DOWN_MARGIN)) && (meas_rate_max-meas_rate_min > meas_rate_max*aggressiveness) && (tune_d > tune_d_min)) {
// if bounce back was larger than the threshold so decrement the success counter
if (counter > 0) {
counter--;
}
// decrease D gain (which should decrease bounce back)
tune_d -= tune_d*tune_d_step_ratio;
// do not decrease the D term past the minimum
if (tune_d <= tune_d_min) {
tune_d = tune_d_min;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
// decrease P gain to match D gain reduction
tune_p -= tune_p*tune_p_step_ratio;
// do not decrease the P term past the minimum
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
// cancel change in direction
positive_direction = !positive_direction;
} else {
if (ignore_next == false) {
// if maximum measurement was lower than target so decrement the success counter
if (counter > 0) {
counter--;
}
// increase P gain (which should increase the maximum)
tune_p += tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
ignore_next = false;
}
}
}
// updating_angle_p_down - decrease P until we don't reach the target before time out
// P is decreased to ensure we are not overshooting the target
void AC_AutoTune_Multi::updating_angle_p_down(float &tune_p, float tune_p_min, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max)
{
if (meas_angle_max < angle_target*(1+0.5f*aggressiveness)) {
if (ignore_next == false) {
// if maximum measurement was lower than target so increment the success counter
counter++;
} else {
ignore_next = false;
}
} else {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was higher than target so decrement the success counter
if (counter > 0) {
counter--;
}
// decrease P gain (which should decrease the maximum)
tune_p -= tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p <= tune_p_min) {
tune_p = tune_p_min;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
}
}
// updating_angle_p_up - increase P to ensure the target is reached
// P is increased until we achieve our target within a reasonable time
void AC_AutoTune_Multi::updating_angle_p_up(float &tune_p, float tune_p_max, float tune_p_step_ratio, float angle_target, float meas_angle_max, float meas_rate_min, float meas_rate_max)
{
if ((meas_angle_max > angle_target*(1+0.5f*aggressiveness)) ||
((meas_angle_max > angle_target) && (meas_rate_min < -meas_rate_max*aggressiveness))) {
// ignore the next result unless it is the same as this one
ignore_next = true;
// if maximum measurement was greater than target so increment the success counter
counter++;
} else {
if (ignore_next == false) {
// if maximum measurement was lower than target so decrement the success counter
if (counter > 0) {
counter--;
}
// increase P gain (which should increase the maximum)
tune_p += tune_p*tune_p_step_ratio;
// stop tuning if we hit maximum P
if (tune_p >= tune_p_max) {
tune_p = tune_p_max;
counter = AUTOTUNE_SUCCESS_COUNT;
AP::logger().Write_Event(LogEvent::AUTOTUNE_REACHED_LIMIT);
}
} else {
ignore_next = false;
}
}
}
void AC_AutoTune_Multi::Log_AutoTune()
{
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, target_angle, test_angle_min, test_angle_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
break;
}
} else {
switch (axis) {
case ROLL:
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_roll_rp, tune_roll_rd, tune_roll_sp, test_accel_max);
break;
case PITCH:
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_pitch_rp, tune_pitch_rd, tune_pitch_sp, test_accel_max);
break;
case YAW:
Log_Write_AutoTune(axis, tune_type, target_rate, test_rate_min, test_rate_max, tune_yaw_rp, tune_yaw_rLPF, tune_yaw_sp, test_accel_max);
break;
}
}
}
void AC_AutoTune_Multi::Log_AutoTuneDetails()
{
Log_Write_AutoTuneDetails(lean_angle, rotation_rate);
}
// @LoggerMessage: ATUN
// @Description: Copter/QuadPlane AutoTune
// @Vehicles: Copter, Plane
// @Field: TimeUS: Time since system startup
// @Field: Axis: which axis is currently being tuned
// @Field: TuneStep: step in autotune process
// @Field: Targ: target angle or rate, depending on tuning step
// @Field: Min: measured minimum target angle or rate
// @Field: Max: measured maximum target angle or rate
// @Field: RP: new rate gain P term
// @Field: RD: new rate gain D term
// @Field: SP: new angle P term
// @Field: ddt: maximum measured twitching acceleration
// Write an Autotune data packet
void AC_AutoTune_Multi::Log_Write_AutoTune(uint8_t _axis, uint8_t tune_step, float meas_target, float meas_min, float meas_max, float new_gain_rp, float new_gain_rd, float new_gain_sp, float new_ddt)
{
AP::logger().Write(
"ATUN",
"TimeUS,Axis,TuneStep,Targ,Min,Max,RP,RD,SP,ddt",
"s--ddd---o",
"F--000---0",
"QBBfffffff",
AP_HAL::micros64(),
axis,
tune_step,
meas_target*0.01f,
meas_min*0.01f,
meas_max*0.01f,
new_gain_rp,
new_gain_rd,
new_gain_sp,
new_ddt);
}
// Write an Autotune data packet
void AC_AutoTune_Multi::Log_Write_AutoTuneDetails(float angle_cd, float rate_cds)
{
// @LoggerMessage: ATDE
// @Description: AutoTune data packet
// @Field: TimeUS: Time since system startup
// @Field: Angle: current angle
// @Field: Rate: current angular rate
AP::logger().WriteStreaming(
"ATDE",
"TimeUS,Angle,Rate",
"sdk",
"F00",
"Qff",
AP_HAL::micros64(),
angle_cd*0.01f,
rate_cds*0.01f);
}
void AC_AutoTune_Multi::twitch_test_init()
{
float target_max_rate;
switch (axis) {
case ROLL: {
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_roll())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_roll_pid().filt_D_hz()*2.0f);
break;
}
case PITCH: {
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_RLLPIT_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_pitch())*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_RLLPIT_CD, AUTOTUNE_TARGET_ANGLE_RLLPIT_CD);
rotation_rate_filt.set_cutoff_frequency(attitude_control->get_rate_pitch_pid().filt_D_hz()*2.0f);
break;
}
case YAW: {
target_max_rate = MAX(AUTOTUNE_TARGET_MIN_RATE_RLLPIT_CDS, step_scaler*AUTOTUNE_TARGET_RATE_YAW_CDS);
target_rate = constrain_float(ToDeg(attitude_control->max_rate_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_RATE_YAW_CDS, target_max_rate);
target_angle = constrain_float(ToDeg(attitude_control->max_angle_step_bf_yaw()*0.75f)*100.0f, AUTOTUNE_TARGET_MIN_ANGLE_YAW_CD, AUTOTUNE_TARGET_ANGLE_YAW_CD);
rotation_rate_filt.set_cutoff_frequency(AUTOTUNE_Y_FILT_FREQ);
break;
}
}
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
rotation_rate_filt.reset(start_rate);
} else {
rotation_rate_filt.reset(0);
}
}
//run twitch test
void AC_AutoTune_Multi::twitch_test_run(AxisType test_axis, const float dir_sign)
{
// disable rate limits
attitude_control->use_sqrt_controller(false);
// hold current attitude
attitude_control->input_rate_bf_roll_pitch_yaw(0.0f, 0.0f, 0.0f);
if ((tune_type == SP_DOWN) || (tune_type == SP_UP)) {
// step angle targets on first iteration
if (twitch_first_iter) {
twitch_first_iter = false;
// Testing increasing stabilize P gain so will set lean angle target
switch (test_axis) {
case ROLL:
// request roll to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(dir_sign * target_angle, 0.0f, 0.0f);
break;
case PITCH:
// request pitch to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, dir_sign * target_angle, 0.0f);
break;
case YAW:
// request pitch to 20deg
attitude_control->input_angle_step_bf_roll_pitch_yaw(0.0f, 0.0f, dir_sign * target_angle);
break;
}
}
} else {
// Testing rate P and D gains so will set body-frame rate targets.
// Rate controller will use existing body-frame rates and convert to motor outputs
// for all axes except the one we override here.
switch (test_axis) {
case ROLL:
// override body-frame roll rate
attitude_control->rate_bf_roll_target(dir_sign * target_rate + start_rate);
break;
case PITCH:
// override body-frame pitch rate
attitude_control->rate_bf_pitch_target(dir_sign * target_rate + start_rate);
break;
case YAW:
// override body-frame yaw rate
attitude_control->rate_bf_yaw_target(dir_sign * target_rate + start_rate);
break;
}
}
// capture this iteration's rotation rate and lean angle
float gyro_reading = 0;
switch (test_axis) {
case ROLL:
gyro_reading = ahrs_view->get_gyro().x;
lean_angle = dir_sign * (ahrs_view->roll_sensor - (int32_t)start_angle);
break;
case PITCH:
gyro_reading = ahrs_view->get_gyro().y;
lean_angle = dir_sign * (ahrs_view->pitch_sensor - (int32_t)start_angle);
break;
case YAW:
gyro_reading = ahrs_view->get_gyro().z;
lean_angle = dir_sign * wrap_180_cd(ahrs_view->yaw_sensor-(int32_t)start_angle);
break;
}
// Add filter to measurements
float filter_value;
switch (tune_type) {
case SP_DOWN:
case SP_UP:
filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f);
break;
default:
filter_value = dir_sign * (ToDeg(gyro_reading) * 100.0f - start_rate);
break;
}
rotation_rate = rotation_rate_filt.apply(filter_value,
AP::scheduler().get_loop_period_s());
switch (tune_type) {
case RD_UP:
case RD_DOWN:
twitching_test_rate(rotation_rate, target_rate, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min);
break;
case RP_UP:
twitching_test_rate(rotation_rate, target_rate*(1+0.5f*aggressiveness), test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate, rate_max);
twitching_abort_rate(lean_angle, rotation_rate, abort_angle, test_rate_min);
break;
case SP_DOWN:
case SP_UP:
twitching_test_angle(lean_angle, rotation_rate, target_angle*(1+0.5f*aggressiveness), test_angle_min, test_angle_max, test_rate_min, test_rate_max);
twitching_measure_acceleration(test_accel_max, rotation_rate - dir_sign * start_rate, rate_max);
break;
default:
break;
}
}