Ardupilot2/libraries/AP_HAL_Linux/OpticalFlow_Onboard.cpp
Lucas De Marchi 49d08ba72a Global: remove minlure
Minlure is a port of ArduPilot to Minnow Board connected to daughter
board. Very few of those were produced and nobody is flying with it.

It served its purpose and all the the improvements to ArduPilot remain
regardless of it not being supported anymore. Now it's just adding
maintenance work with no clear benefit, so pull the plug.
2018-06-26 07:32:08 -07:00

423 lines
15 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
#include "OpticalFlow_Onboard.h"
#include <fcntl.h>
#include <linux/v4l2-mediabus.h>
#include <pthread.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include <vector>
#include "CameraSensor_Mt9v117.h"
#include "GPIO.h"
#include "PWM_Sysfs.h"
#include "AP_HAL/utility/RingBuffer.h"
#define OPTICAL_FLOW_ONBOARD_RTPRIO 11
static const unsigned int OPTICAL_FLOW_GYRO_BUFFER_LEN = 400;
extern const AP_HAL::HAL& hal;
using namespace Linux;
void OpticalFlow_Onboard::init()
{
uint32_t top, left;
uint32_t crop_width, crop_height;
uint32_t memtype = V4L2_MEMORY_MMAP;
unsigned int nbufs = 0;
int ret;
pthread_attr_t attr;
struct sched_param param = {
.sched_priority = OPTICAL_FLOW_ONBOARD_RTPRIO
};
if (_initialized) {
return;
}
_videoin = new VideoIn;
const char* device_path = HAL_OPTFLOW_ONBOARD_VDEV_PATH;
memtype = V4L2_MEMORY_MMAP;
nbufs = HAL_OPTFLOW_ONBOARD_NBUFS;
_width = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH;
_height = HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT;
crop_width = HAL_OPTFLOW_ONBOARD_CROP_WIDTH;
crop_height = HAL_OPTFLOW_ONBOARD_CROP_HEIGHT;
top = 0;
/* make the image square by cropping to YxY, removing the lateral edges */
left = (HAL_OPTFLOW_ONBOARD_SENSOR_WIDTH -
HAL_OPTFLOW_ONBOARD_SENSOR_HEIGHT) / 2;
if (device_path == nullptr ||
!_videoin->open_device(device_path, memtype)) {
AP_HAL::panic("OpticalFlow_Onboard: couldn't open "
"video device");
}
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP
_pwm = new PWM_Sysfs_Bebop(BEBOP_CAMV_PWM);
_pwm->init();
_pwm->set_freq(BEBOP_CAMV_PWM_FREQ);
_pwm->enable(true);
_camerasensor = new CameraSensor_Mt9v117(HAL_OPTFLOW_ONBOARD_SUBDEV_PATH,
hal.i2c_mgr->get_device(0, 0x5D),
MT9V117_QVGA,
BEBOP_GPIO_CAMV_NRST,
BEBOP_CAMV_PWM_FREQ);
if (!_camerasensor->set_format(HAL_OPTFLOW_ONBOARD_SENSOR_WIDTH,
HAL_OPTFLOW_ONBOARD_SENSOR_HEIGHT,
V4L2_MBUS_FMT_UYVY8_2X8)) {
AP_HAL::panic("OpticalFlow_Onboard: couldn't set subdev fmt\n");
}
_format = V4L2_PIX_FMT_NV12;
#endif
if (!_videoin->set_format(&_width, &_height, &_format, &_bytesperline,
&_sizeimage)) {
AP_HAL::panic("OpticalFlow_Onboard: couldn't set video format");
}
if (_format != V4L2_PIX_FMT_NV12 && _format != V4L2_PIX_FMT_GREY &&
_format != V4L2_PIX_FMT_YUYV) {
AP_HAL::panic("OpticalFlow_Onboard: format not supported\n");
}
if (_width == HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH &&
_height == HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT) {
_shrink_by_software = false;
} else {
/* here we store the actual camera output width and height to use
* them later on to software shrink each frame. */
_shrink_by_software = true;
_camera_output_width = _width;
_camera_output_height = _height;
/* we set these values here in order to the calculations be correct
* (such as PX4 init) even though we shrink each frame later on. */
_width = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH;
_height = HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT;
_bytesperline = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH;
}
if (_videoin->set_crop(left, top, crop_width, crop_height)) {
_crop_by_software = false;
} else {
_crop_by_software = true;
if (!_shrink_by_software) {
/* here we store the actual camera output width and height to use
* them later on to software crop each frame. */
_camera_output_width = _width;
_camera_output_height = _height;
/* we set these values here in order to the calculations be correct
* (such as PX4 init) even though we crop each frame later on. */
_width = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH;
_height = HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT;
_bytesperline = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH;
}
}
if (!_videoin->allocate_buffers(nbufs)) {
AP_HAL::panic("OpticalFlow_Onboard: couldn't allocate video buffers");
}
_videoin->prepare_capture();
/* Use px4 algorithm for optical flow */
_flow = new Flow_PX4(_width, _bytesperline,
HAL_FLOW_PX4_MAX_FLOW_PIXEL,
HAL_FLOW_PX4_BOTTOM_FLOW_FEATURE_THRESHOLD,
HAL_FLOW_PX4_BOTTOM_FLOW_VALUE_THRESHOLD);
/* Create the thread that will be waiting for frames
* Initialize thread and mutex */
ret = pthread_mutex_init(&_mutex, nullptr);
if (ret != 0) {
AP_HAL::panic("OpticalFlow_Onboard: failed to init mutex");
}
ret = pthread_attr_init(&attr);
if (ret != 0) {
AP_HAL::panic("OpticalFlow_Onboard: failed to init attr");
}
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
pthread_attr_setschedparam(&attr, &param);
ret = pthread_create(&_thread, &attr, _read_thread, this);
if (ret != 0) {
AP_HAL::panic("OpticalFlow_Onboard: failed to create thread");
}
_gyro_ring_buffer = new ObjectBuffer<GyroSample>(OPTICAL_FLOW_GYRO_BUFFER_LEN);
_initialized = true;
}
bool OpticalFlow_Onboard::read(AP_HAL::OpticalFlow::Data_Frame& frame)
{
bool ret;
pthread_mutex_lock(&_mutex);
if (!_data_available) {
ret = false;
goto end;
}
frame.pixel_flow_x_integral = _pixel_flow_x_integral;
frame.pixel_flow_y_integral = _pixel_flow_y_integral;
frame.gyro_x_integral = _gyro_x_integral;
frame.gyro_y_integral = _gyro_y_integral;
frame.delta_time = _integration_timespan;
frame.quality = _surface_quality;
_integration_timespan = 0;
_pixel_flow_x_integral = 0;
_pixel_flow_y_integral = 0;
_gyro_x_integral = 0;
_gyro_y_integral = 0;
_data_available = false;
ret = true;
end:
pthread_mutex_unlock(&_mutex);
return ret;
}
void OpticalFlow_Onboard::push_gyro(float gyro_x, float gyro_y, float dt)
{
GyroSample sample;
struct timespec ts;
if (!_gyro_ring_buffer) {
return;
}
clock_gettime(CLOCK_MONOTONIC, &ts);
_integrated_gyro.x += (gyro_x - _gyro_bias.x) * dt;
_integrated_gyro.y += (gyro_y - _gyro_bias.y) * dt;
sample.gyro = _integrated_gyro;
sample.time_us = 1.0e6 * (ts.tv_sec + (ts.tv_nsec*1.0e-9));
_gyro_ring_buffer->push(sample);
}
void OpticalFlow_Onboard::_get_integrated_gyros(uint64_t timestamp, GyroSample &gyro)
{
GyroSample integrated_gyro_at_time = {};
unsigned int retries = 0;
// pop all samples prior to frame time
while (_gyro_ring_buffer->pop(integrated_gyro_at_time) &&
integrated_gyro_at_time.time_us < timestamp &&
retries++ < OPTICAL_FLOW_GYRO_BUFFER_LEN);
gyro = integrated_gyro_at_time;
}
void OpticalFlow_Onboard::push_gyro_bias(float gyro_bias_x, float gyro_bias_y)
{
_gyro_bias.x = gyro_bias_x;
_gyro_bias.y = gyro_bias_y;
}
void *OpticalFlow_Onboard::_read_thread(void *arg)
{
OpticalFlow_Onboard *optflow_onboard = (OpticalFlow_Onboard *) arg;
optflow_onboard->_run_optflow();
return nullptr;
}
void OpticalFlow_Onboard::_run_optflow()
{
GyroSample gyro_sample;
Vector2f flow_rate;
VideoIn::Frame video_frame;
uint32_t convert_buffer_size = 0, output_buffer_size = 0;
uint32_t crop_left = 0, crop_top = 0;
uint32_t shrink_scale = 0, shrink_width = 0, shrink_height = 0;
uint32_t shrink_width_offset = 0, shrink_height_offset = 0;
uint8_t *convert_buffer = nullptr, *output_buffer = nullptr;
uint8_t qual;
if (_format == V4L2_PIX_FMT_YUYV) {
if (_shrink_by_software || _crop_by_software) {
convert_buffer_size = _camera_output_width * _camera_output_height;
} else {
convert_buffer_size = _width * _height;
}
convert_buffer = (uint8_t *)calloc(1, convert_buffer_size);
if (!convert_buffer) {
AP_HAL::panic("OpticalFlow_Onboard: couldn't allocate conversion buffer\n");
}
}
if (_shrink_by_software || _crop_by_software) {
output_buffer_size = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH *
HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT;
output_buffer = (uint8_t *)calloc(1, output_buffer_size);
if (!output_buffer) {
if (convert_buffer) {
free(convert_buffer);
}
AP_HAL::panic("OpticalFlow_Onboard: couldn't allocate crop buffer\n");
}
}
if (_shrink_by_software) {
if (_camera_output_width > _camera_output_height) {
shrink_scale = (uint32_t) _camera_output_height /
HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT;
} else {
shrink_scale = (uint32_t) _camera_output_width /
HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH;
}
shrink_width = HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH * shrink_scale;
shrink_height = HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT * shrink_scale;
shrink_width_offset = (_camera_output_width - shrink_width) / 2;
shrink_height_offset = (_camera_output_height - shrink_height) / 2;
} else if (_crop_by_software) {
crop_left = _camera_output_width / 2 -
HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH / 2;
crop_top = _camera_output_height / 2 -
HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT / 2;
}
while(true) {
/* wait for next frame to come */
if (!_videoin->get_frame(video_frame)) {
if (convert_buffer) {
free(convert_buffer);
}
if (output_buffer) {
free(output_buffer);
}
AP_HAL::panic("OpticalFlow_Onboard: couldn't get frame\n");
}
if (_format == V4L2_PIX_FMT_YUYV) {
VideoIn::yuyv_to_grey((uint8_t *)video_frame.data,
convert_buffer_size * 2, convert_buffer);
memset(video_frame.data, 0, convert_buffer_size * 2);
memcpy(video_frame.data, convert_buffer, convert_buffer_size);
}
if (_shrink_by_software) {
/* shrink_8bpp() will shrink a selected area using the offsets,
* therefore, we don't need the crop. */
VideoIn::shrink_8bpp((uint8_t *)video_frame.data, output_buffer,
_camera_output_width, _camera_output_height,
shrink_width_offset, shrink_width,
shrink_height_offset, shrink_height,
shrink_scale, shrink_scale);
memset(video_frame.data, 0, _camera_output_width * _camera_output_height);
memcpy(video_frame.data, output_buffer, output_buffer_size);
} else if (_crop_by_software) {
VideoIn::crop_8bpp((uint8_t *)video_frame.data, output_buffer,
_camera_output_width,
crop_left, HAL_OPTFLOW_ONBOARD_OUTPUT_WIDTH,
crop_top, HAL_OPTFLOW_ONBOARD_OUTPUT_HEIGHT);
memset(video_frame.data, 0, _camera_output_width * _camera_output_height);
memcpy(video_frame.data, output_buffer, output_buffer_size);
}
/* if it is at least the second frame we receive
* since we have to compare 2 frames */
if (_last_video_frame.data == nullptr) {
_last_video_frame = video_frame;
continue;
}
/* read the integrated gyro data */
_get_integrated_gyros(video_frame.timestamp, gyro_sample);
#ifdef OPTICALFLOW_ONBOARD_RECORD_VIDEO
int fd = open(OPTICALFLOW_ONBOARD_VIDEO_FILE, O_CLOEXEC | O_CREAT | O_WRONLY
| O_APPEND, S_IRUSR | S_IWUSR | S_IRGRP |
S_IWGRP | S_IROTH | S_IWOTH);
if (fd != -1) {
write(fd, video_frame.data, _sizeimage);
#ifdef OPTICALFLOW_ONBOARD_RECORD_METADATAS
struct PACKED {
uint32_t timestamp;
float x;
float y;
float z;
} metas = { video_frame.timestamp, rate_x, rate_y, rate_z};
write(fd, &metas, sizeof(metas));
#endif
close(fd);
}
#endif
/* compute gyro data and video frames
* get flow rate to send it to the opticalflow driver
*/
qual = _flow->compute_flow((uint8_t*)_last_video_frame.data,
(uint8_t *)video_frame.data,
video_frame.timestamp -
_last_video_frame.timestamp,
&flow_rate.x, &flow_rate.y);
/* fill data frame for upper layers */
pthread_mutex_lock(&_mutex);
_pixel_flow_x_integral += flow_rate.x /
HAL_FLOW_PX4_FOCAL_LENGTH_MILLIPX;
_pixel_flow_y_integral += flow_rate.y /
HAL_FLOW_PX4_FOCAL_LENGTH_MILLIPX;
_integration_timespan += video_frame.timestamp -
_last_video_frame.timestamp;
_gyro_x_integral += (gyro_sample.gyro.x - _last_gyro_rate.x) *
(video_frame.timestamp - _last_video_frame.timestamp) /
(gyro_sample.time_us - _last_integration_time);
_gyro_y_integral += (gyro_sample.gyro.y - _last_gyro_rate.y) /
(gyro_sample.time_us - _last_integration_time) *
(video_frame.timestamp - _last_video_frame.timestamp);
_surface_quality = qual;
_data_available = true;
pthread_mutex_unlock(&_mutex);
/* give the last frame back to the video input driver */
_videoin->put_frame(_last_video_frame);
_last_integration_time = gyro_sample.time_us;
_last_video_frame = video_frame;
_last_gyro_rate = gyro_sample.gyro;
}
if (convert_buffer) {
free(convert_buffer);
}
if (output_buffer) {
free(output_buffer);
}
}
#endif