455 lines
23 KiB
C++
455 lines
23 KiB
C++
#pragma once
|
|
|
|
/// @file AC_AttitudeControl.h
|
|
/// @brief ArduCopter attitude control library
|
|
|
|
#include <AP_Common/AP_Common.h>
|
|
#include <AP_Param/AP_Param.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include <AP_AHRS/AP_AHRS_View.h>
|
|
#include <AP_Motors/AP_Motors.h>
|
|
#include <AC_PID/AC_PID.h>
|
|
#include <AC_PID/AC_P.h>
|
|
|
|
#define AC_ATTITUDE_CONTROL_ANGLE_P 4.5f // default angle P gain for roll, pitch and yaw
|
|
|
|
#define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS radians(40.0f) // minimum body-frame acceleration limit for the stability controller (for roll and pitch axis)
|
|
#define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS radians(720.0f) // maximum body-frame acceleration limit for the stability controller (for roll and pitch axis)
|
|
#define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS radians(10.0f) // minimum body-frame acceleration limit for the stability controller (for yaw axis)
|
|
#define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS radians(120.0f) // maximum body-frame acceleration limit for the stability controller (for yaw axis)
|
|
#define AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS 6000 // constraint on yaw angle error in degrees. This should lead to maximum turn rate of 10deg/sec * Stab Rate P so by default will be 45deg/sec.
|
|
#define AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS 110000.0f // default maximum acceleration for roll/pitch axis in centidegrees/sec/sec
|
|
#define AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS 27000.0f // default maximum acceleration for yaw axis in centidegrees/sec/sec
|
|
|
|
#define AC_ATTITUDE_RATE_CONTROLLER_TIMEOUT 1.0f // body-frame rate controller timeout in seconds
|
|
#define AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX 1.0f // body-frame rate controller maximum output (for roll-pitch axis)
|
|
#define AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX 1.0f // body-frame rate controller maximum output (for yaw axis)
|
|
|
|
#define AC_ATTITUDE_THRUST_ERROR_ANGLE radians(30.0f) // Thrust angle error above which yaw corrections are limited
|
|
|
|
#define AC_ATTITUDE_400HZ_DT 0.0025f // delta time in seconds for 400hz update rate
|
|
|
|
#define AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT 1 // body-frame rate feedforward enabled by default
|
|
|
|
#define AC_ATTITUDE_CONTROL_ANGLE_LIMIT_TC_DEFAULT 1.0f // Time constant used to limit lean angle so that vehicle does not lose altitude
|
|
#define AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX 0.8f // Max throttle used to limit lean angle so that vehicle does not lose altitude
|
|
#define AC_ATTITUDE_CONTROL_ANGLE_LIMIT_MIN 10.0f // Min lean angle so that vehicle can maintain limited control
|
|
|
|
#define AC_ATTITUDE_CONTROL_MIN_DEFAULT 0.1f // minimum throttle mix default
|
|
#define AC_ATTITUDE_CONTROL_MAN_DEFAULT 0.1f // manual throttle mix default
|
|
#define AC_ATTITUDE_CONTROL_MAX_DEFAULT 0.5f // maximum throttle mix default
|
|
#define AC_ATTITUDE_CONTROL_MAX 5.0f // maximum throttle mix default
|
|
|
|
#define AC_ATTITUDE_CONTROL_THR_MIX_DEFAULT 0.5f // ratio controlling the max throttle output during competing requests of low throttle from the pilot (or autopilot) and higher throttle for attitude control. Higher favours Attitude over pilot input
|
|
|
|
class AC_AttitudeControl {
|
|
public:
|
|
AC_AttitudeControl( AP_AHRS_View &ahrs,
|
|
const AP_Vehicle::MultiCopter &aparm,
|
|
AP_Motors& motors,
|
|
float dt) :
|
|
_p_angle_roll(AC_ATTITUDE_CONTROL_ANGLE_P),
|
|
_p_angle_pitch(AC_ATTITUDE_CONTROL_ANGLE_P),
|
|
_p_angle_yaw(AC_ATTITUDE_CONTROL_ANGLE_P),
|
|
_dt(dt),
|
|
_angle_boost(0),
|
|
_use_sqrt_controller(true),
|
|
_throttle_rpy_mix_desired(AC_ATTITUDE_CONTROL_THR_MIX_DEFAULT),
|
|
_throttle_rpy_mix(AC_ATTITUDE_CONTROL_THR_MIX_DEFAULT),
|
|
_ahrs(ahrs),
|
|
_aparm(aparm),
|
|
_motors(motors)
|
|
{
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
}
|
|
|
|
// Empty destructor to suppress compiler warning
|
|
virtual ~AC_AttitudeControl() {}
|
|
|
|
// pid accessors
|
|
AC_P& get_angle_roll_p() { return _p_angle_roll; }
|
|
AC_P& get_angle_pitch_p() { return _p_angle_pitch; }
|
|
AC_P& get_angle_yaw_p() { return _p_angle_yaw; }
|
|
virtual AC_PID& get_rate_roll_pid() = 0;
|
|
virtual AC_PID& get_rate_pitch_pid() = 0;
|
|
virtual AC_PID& get_rate_yaw_pid() = 0;
|
|
|
|
// get the roll acceleration limit in centidegrees/s/s or radians/s/s
|
|
float get_accel_roll_max() const { return _accel_roll_max; }
|
|
float get_accel_roll_max_radss() const { return radians(_accel_roll_max * 0.01f); }
|
|
|
|
// Sets the roll acceleration limit in centidegrees/s/s
|
|
void set_accel_roll_max(float accel_roll_max) { _accel_roll_max = accel_roll_max; }
|
|
|
|
// Sets and saves the roll acceleration limit in centidegrees/s/s
|
|
void save_accel_roll_max(float accel_roll_max) { _accel_roll_max.set_and_save(accel_roll_max); }
|
|
|
|
// get the pitch acceleration limit in centidegrees/s/s or radians/s/s
|
|
float get_accel_pitch_max() const { return _accel_pitch_max; }
|
|
float get_accel_pitch_max_radss() const { return radians(_accel_pitch_max * 0.01f); }
|
|
|
|
// Sets the pitch acceleration limit in centidegrees/s/s
|
|
void set_accel_pitch_max(float accel_pitch_max) { _accel_pitch_max = accel_pitch_max; }
|
|
|
|
// Sets and saves the pitch acceleration limit in centidegrees/s/s
|
|
void save_accel_pitch_max(float accel_pitch_max) { _accel_pitch_max.set_and_save(accel_pitch_max); }
|
|
|
|
// get the yaw acceleration limit in centidegrees/s/s or radians/s/s
|
|
float get_accel_yaw_max() const { return _accel_yaw_max; }
|
|
float get_accel_yaw_max_radss() const { return radians(_accel_yaw_max * 0.01f); }
|
|
|
|
// Sets the yaw acceleration limit in centidegrees/s/s
|
|
void set_accel_yaw_max(float accel_yaw_max) { _accel_yaw_max = accel_yaw_max; }
|
|
|
|
// Sets and saves the yaw acceleration limit in centidegrees/s/s
|
|
void save_accel_yaw_max(float accel_yaw_max) { _accel_yaw_max.set_and_save(accel_yaw_max); }
|
|
|
|
// set the rate control input smoothing time constant
|
|
void set_input_tc(float input_tc) { _input_tc = constrain_float(input_tc, 0.0f, 1.0f); }
|
|
|
|
// Ensure attitude controller have zero errors to relax rate controller output
|
|
void relax_attitude_controllers();
|
|
|
|
// reset rate controller I terms
|
|
void reset_rate_controller_I_terms();
|
|
|
|
// Sets attitude target to vehicle attitude
|
|
void set_attitude_target_to_current_attitude() { _ahrs.get_quat_body_to_ned(_attitude_target_quat); }
|
|
|
|
// Sets yaw target to vehicle heading
|
|
void set_yaw_target_to_current_heading() { shift_ef_yaw_target(degrees(_ahrs.yaw - _attitude_target_euler_angle.z) * 100.0f); }
|
|
|
|
// Shifts earth frame yaw target by yaw_shift_cd. yaw_shift_cd should be in centidegrees and is added to the current target heading
|
|
void shift_ef_yaw_target(float yaw_shift_cd);
|
|
|
|
// handle reset of attitude from EKF since the last iteration
|
|
void inertial_frame_reset();
|
|
|
|
// Command a Quaternion attitude with feedforward and smoothing
|
|
void input_quaternion(Quaternion attitude_desired_quat);
|
|
|
|
// Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing
|
|
virtual void input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds);
|
|
|
|
// Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing
|
|
virtual void input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw);
|
|
|
|
// Command euler yaw rate and pitch angle with roll angle specified in body frame with multicopter style controls
|
|
// (used only by tailsitter quadplanes)
|
|
virtual void input_euler_rate_yaw_euler_angle_pitch_bf_roll_m(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds);
|
|
|
|
// Command euler yaw rate and pitch angle with roll angle specified in body frame with plane style controls
|
|
// (used only by tailsitter quadplanes)
|
|
virtual void input_euler_rate_yaw_euler_angle_pitch_bf_roll_p(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds);
|
|
|
|
// Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing
|
|
void input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds);
|
|
|
|
// Command an angular velocity with angular velocity feedforward and smoothing
|
|
virtual void input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds);
|
|
|
|
// Command an angular velocity with angular velocity feedforward and smoothing
|
|
void input_rate_bf_roll_pitch_yaw_2(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds);
|
|
|
|
// Command an angular velocity with angular velocity smoothing using rate loops only with integrated rate error stabilization
|
|
void input_rate_bf_roll_pitch_yaw_3(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds);
|
|
|
|
// Command an angular step (i.e change) in body frame angle
|
|
virtual void input_angle_step_bf_roll_pitch_yaw(float roll_angle_step_bf_cd, float pitch_angle_step_bf_cd, float yaw_angle_step_bf_cd);
|
|
|
|
// Run angular velocity controller and send outputs to the motors
|
|
virtual void rate_controller_run() = 0;
|
|
|
|
// Convert a 321-intrinsic euler angle derivative to an angular velocity vector
|
|
void euler_rate_to_ang_vel(const Vector3f& euler_rad, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads);
|
|
|
|
// Convert an angular velocity vector to a 321-intrinsic euler angle derivative
|
|
// Returns false if the vehicle is pitched 90 degrees up or down
|
|
bool ang_vel_to_euler_rate(const Vector3f& euler_rad, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads);
|
|
|
|
// Specifies whether the attitude controller should use the square root controller in the attitude correction.
|
|
// This is used during Autotune to ensure the P term is tuned without being influenced by the acceleration limit of the square root controller.
|
|
void use_sqrt_controller(bool use_sqrt_cont) { _use_sqrt_controller = use_sqrt_cont; }
|
|
|
|
// Return 321-intrinsic euler angles in centidegrees representing the rotation from NED earth frame to the
|
|
// attitude controller's target attitude.
|
|
// **NOTE** Using vector3f*deg(100) is more efficient than deg(vector3f)*100 or deg(vector3d*100) because it gives the
|
|
// same result with the fewest multiplications. Even though it may look like a bug, it is intentional. See issue 4895.
|
|
Vector3f get_att_target_euler_cd() const { return _attitude_target_euler_angle * degrees(100.0f); }
|
|
|
|
// Return the angle between the target thrust vector and the current thrust vector.
|
|
float get_att_error_angle_deg() const { return degrees(_thrust_error_angle); }
|
|
|
|
// Set x-axis angular velocity in centidegrees/s
|
|
void rate_bf_roll_target(float rate_cds) { _rate_target_ang_vel.x = radians(rate_cds * 0.01f); }
|
|
|
|
// Set y-axis angular velocity in centidegrees/s
|
|
void rate_bf_pitch_target(float rate_cds) { _rate_target_ang_vel.y = radians(rate_cds * 0.01f); }
|
|
|
|
// Set z-axis angular velocity in centidegrees/s
|
|
void rate_bf_yaw_target(float rate_cds) { _rate_target_ang_vel.z = radians(rate_cds * 0.01f); }
|
|
|
|
// Return roll rate step size in radians/s that results in maximum output after 4 time steps
|
|
float max_rate_step_bf_roll();
|
|
|
|
// Return pitch rate step size in radians/s that results in maximum output after 4 time steps
|
|
float max_rate_step_bf_pitch();
|
|
|
|
// Return yaw rate step size in radians/s that results in maximum output after 4 time steps
|
|
float max_rate_step_bf_yaw();
|
|
|
|
// Return roll step size in radians that results in maximum output after 4 time steps
|
|
float max_angle_step_bf_roll() { return max_rate_step_bf_roll() / _p_angle_roll.kP(); }
|
|
|
|
// Return pitch step size in radians that results in maximum output after 4 time steps
|
|
float max_angle_step_bf_pitch() { return max_rate_step_bf_pitch() / _p_angle_pitch.kP(); }
|
|
|
|
// Return yaw step size in radians that results in maximum output after 4 time steps
|
|
float max_angle_step_bf_yaw() { return max_rate_step_bf_yaw() / _p_angle_yaw.kP(); }
|
|
|
|
// Return angular velocity in radians used in the angular velocity controller
|
|
Vector3f rate_bf_targets() const { return _rate_target_ang_vel; }
|
|
|
|
// Enable or disable body-frame feed forward
|
|
void bf_feedforward(bool enable_or_disable) { _rate_bf_ff_enabled = enable_or_disable; }
|
|
|
|
// Enable or disable body-frame feed forward and save
|
|
void bf_feedforward_save(bool enable_or_disable) { _rate_bf_ff_enabled.set_and_save(enable_or_disable); }
|
|
|
|
// Return body-frame feed forward setting
|
|
bool get_bf_feedforward() { return _rate_bf_ff_enabled; }
|
|
|
|
// Enable or disable body-frame feed forward
|
|
void accel_limiting(bool enable_or_disable);
|
|
|
|
// Update Alt_Hold angle maximum
|
|
virtual void update_althold_lean_angle_max(float throttle_in) = 0;
|
|
|
|
// Set output throttle
|
|
virtual void set_throttle_out(float throttle_in, bool apply_angle_boost, float filt_cutoff) = 0;
|
|
|
|
// get throttle passed into attitude controller (i.e. throttle_in provided to set_throttle_out)
|
|
float get_throttle_in() const { return _throttle_in; }
|
|
|
|
// Return throttle increase applied for tilt compensation
|
|
float angle_boost() const { return _angle_boost; }
|
|
|
|
// Return tilt angle limit for pilot input that prioritises altitude hold over lean angle
|
|
float get_althold_lean_angle_max() const;
|
|
|
|
// Return configured tilt angle limit in centidegrees
|
|
float lean_angle_max() const { return _aparm.angle_max; }
|
|
|
|
// Proportional controller with piecewise sqrt sections to constrain second derivative
|
|
static float sqrt_controller(float error, float p, float second_ord_lim, float dt);
|
|
|
|
// Inverse proportional controller with piecewise sqrt sections to constrain second derivative
|
|
static float stopping_point(float first_ord_mag, float p, float second_ord_lim);
|
|
|
|
// calculates the velocity correction from an angle error. The angular velocity has acceleration and
|
|
// deceleration limits including basic jerk limiting using smoothing_gain
|
|
static float input_shaping_angle(float error_angle, float smoothing_gain, float accel_max, float target_ang_vel, float dt);
|
|
|
|
// limits the acceleration and deceleration of a velocity request
|
|
static float input_shaping_ang_vel(float target_ang_vel, float desired_ang_vel, float accel_max, float dt);
|
|
|
|
// calculates the expected angular velocity correction from an angle error based on the AC_AttitudeControl settings.
|
|
// This function can be used to predict the delay associated with angle requests.
|
|
void input_shaping_rate_predictor(const Vector2f &error_angle, Vector2f& target_ang_vel, float dt) const;
|
|
|
|
// translates body frame acceleration limits to the euler axis
|
|
void ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_max, float ang_vel_pitch_max, float ang_vel_yaw_max) const;
|
|
|
|
// translates body frame acceleration limits to the euler axis
|
|
Vector3f euler_accel_limit(const Vector3f &euler_rad, const Vector3f &euler_accel);
|
|
|
|
// thrust_heading_rotation_angles - calculates two ordered rotations to move the att_from_quat quaternion to the att_to_quat quaternion.
|
|
// The first rotation corrects the thrust vector and the second rotation corrects the heading vector.
|
|
void thrust_heading_rotation_angles(Quaternion& att_to_quat, const Quaternion& att_from_quat, Vector3f& att_diff_angle, float& thrust_vec_dot);
|
|
|
|
// Calculates the body frame angular velocities to follow the target attitude
|
|
void attitude_controller_run_quat();
|
|
|
|
// sanity check parameters. should be called once before take-off
|
|
virtual void parameter_sanity_check() {}
|
|
|
|
// return true if the rpy mix is at lowest value
|
|
virtual bool is_throttle_mix_min() const { return true; }
|
|
|
|
// control rpy throttle mix
|
|
virtual void set_throttle_mix_min() {}
|
|
virtual void set_throttle_mix_man() {}
|
|
virtual void set_throttle_mix_max() {}
|
|
virtual void set_throttle_mix_value(float value) {}
|
|
virtual float get_throttle_mix(void) const { return 0; }
|
|
|
|
// enable use of flybass passthrough on heli
|
|
virtual void use_flybar_passthrough(bool passthrough, bool tail_passthrough) {}
|
|
|
|
// use_leaky_i - controls whether we use leaky i term for body-frame to motor output stage on heli
|
|
virtual void use_leaky_i(bool leaky_i) {}
|
|
|
|
// set_hover_roll_scalar - scales Hover Roll Trim parameter. To be used by vehicle code according to vehicle condition.
|
|
virtual void set_hover_roll_trim_scalar(float scalar) {}
|
|
|
|
// passthrough_bf_roll_pitch_rate_yaw - roll and pitch are passed through directly, body-frame rate target for yaw
|
|
virtual void passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds) {};
|
|
|
|
// provide feedback on whether arming would be a good idea right now:
|
|
bool pre_arm_checks(const char *param_prefix,
|
|
char *failure_msg,
|
|
const uint8_t failure_msg_len);
|
|
|
|
// enable inverted flight on backends that support it
|
|
virtual void set_inverted_flight(bool inverted) {}
|
|
|
|
// User settable parameters
|
|
static const struct AP_Param::GroupInfo var_info[];
|
|
|
|
protected:
|
|
|
|
// Update rate_target_ang_vel using attitude_error_rot_vec_rad
|
|
Vector3f update_ang_vel_target_from_att_error(const Vector3f &attitude_error_rot_vec_rad);
|
|
|
|
// Run the roll angular velocity PID controller and return the output
|
|
float rate_target_to_motor_roll(float rate_actual_rads, float rate_target_rads);
|
|
|
|
// Run the pitch angular velocity PID controller and return the output
|
|
float rate_target_to_motor_pitch(float rate_actual_rads, float rate_target_rads);
|
|
|
|
// Run the yaw angular velocity PID controller and return the output
|
|
virtual float rate_target_to_motor_yaw(float rate_actual_rads, float rate_target_rads);
|
|
|
|
// Return angle in radians to be added to roll angle. Used by heli to counteract
|
|
// tail rotor thrust in hover. Overloaded by AC_Attitude_Heli to return angle.
|
|
virtual float get_roll_trim_rad() { return 0;}
|
|
|
|
// Return the yaw slew rate limit in radians/s
|
|
float get_slew_yaw_rads() { return radians(_slew_yaw * 0.01f); }
|
|
|
|
// Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes
|
|
AP_Float _slew_yaw;
|
|
|
|
// Maximum angular velocity (in degrees/second) for earth-frame roll, pitch and yaw axis
|
|
AP_Float _ang_vel_roll_max;
|
|
AP_Float _ang_vel_pitch_max;
|
|
AP_Float _ang_vel_yaw_max;
|
|
|
|
// Maximum rotation acceleration for earth-frame roll axis
|
|
AP_Float _accel_roll_max;
|
|
|
|
// Maximum rotation acceleration for earth-frame pitch axis
|
|
AP_Float _accel_pitch_max;
|
|
|
|
// Maximum rotation acceleration for earth-frame yaw axis
|
|
AP_Float _accel_yaw_max;
|
|
|
|
// Enable/Disable body frame rate feed forward
|
|
AP_Int8 _rate_bf_ff_enabled;
|
|
|
|
// Enable/Disable angle boost
|
|
AP_Int8 _angle_boost_enabled;
|
|
|
|
// angle controller P objects
|
|
AC_P _p_angle_roll;
|
|
AC_P _p_angle_pitch;
|
|
AC_P _p_angle_yaw;
|
|
|
|
// Angle limit time constant (to maintain altitude)
|
|
AP_Float _angle_limit_tc;
|
|
|
|
// rate controller input smoothing time constant
|
|
AP_Float _input_tc;
|
|
|
|
// Intersampling period in seconds
|
|
float _dt;
|
|
|
|
// This represents a 321-intrinsic rotation in NED frame to the target (setpoint)
|
|
// attitude used in the attitude controller, in radians.
|
|
Vector3f _attitude_target_euler_angle;
|
|
|
|
// This represents the angular velocity of the target (setpoint) attitude used in
|
|
// the attitude controller as 321-intrinsic euler angle derivatives, in radians per
|
|
// second.
|
|
Vector3f _attitude_target_euler_rate;
|
|
|
|
// This represents a quaternion rotation in NED frame to the target (setpoint)
|
|
// attitude used in the attitude controller.
|
|
Quaternion _attitude_target_quat;
|
|
|
|
// This represents the angular velocity of the target (setpoint) attitude used in
|
|
// the attitude controller as an angular velocity vector, in radians per second in
|
|
// the target attitude frame.
|
|
Vector3f _attitude_target_ang_vel;
|
|
|
|
// This represents the angular velocity in radians per second in the body frame, used in the angular
|
|
// velocity controller.
|
|
Vector3f _rate_target_ang_vel;
|
|
|
|
// This represents a quaternion attitude error in the body frame, used for inertial frame reset handling.
|
|
Quaternion _attitude_ang_error;
|
|
|
|
// The angle between the target thrust vector and the current thrust vector.
|
|
float _thrust_error_angle;
|
|
|
|
// throttle provided as input to attitude controller. This does not include angle boost.
|
|
float _throttle_in = 0.0f;
|
|
|
|
// This represents the throttle increase applied for tilt compensation.
|
|
// Used only for logging.
|
|
float _angle_boost;
|
|
|
|
// Specifies whether the attitude controller should use the square root controller in the attitude correction.
|
|
// This is used during Autotune to ensure the P term is tuned without being influenced by the acceleration limit of the square root controller.
|
|
bool _use_sqrt_controller;
|
|
|
|
// Filtered Alt_Hold lean angle max - used to limit lean angle when throttle is saturated using Alt_Hold
|
|
float _althold_lean_angle_max = 0.0f;
|
|
|
|
// desired throttle_low_comp value, actual throttle_low_comp is slewed towards this value over 1~2 seconds
|
|
float _throttle_rpy_mix_desired;
|
|
|
|
// mix between throttle and hover throttle for 0 to 1 and ratio above hover throttle for >1
|
|
float _throttle_rpy_mix;
|
|
|
|
// References to external libraries
|
|
const AP_AHRS_View& _ahrs;
|
|
const AP_Vehicle::MultiCopter &_aparm;
|
|
AP_Motors& _motors;
|
|
|
|
protected:
|
|
/*
|
|
state of control monitoring
|
|
*/
|
|
struct {
|
|
float rms_roll_P;
|
|
float rms_roll_D;
|
|
float rms_pitch_P;
|
|
float rms_pitch_D;
|
|
float rms_yaw;
|
|
} _control_monitor;
|
|
|
|
// update state in ControlMonitor
|
|
void control_monitor_filter_pid(float value, float &rms_P);
|
|
void control_monitor_update(void);
|
|
|
|
// true in inverted flight mode
|
|
bool _inverted_flight;
|
|
|
|
public:
|
|
// log a CTRL message
|
|
void control_monitor_log(void);
|
|
|
|
// return current RMS controller filter for each axis
|
|
float control_monitor_rms_output_roll(void) const;
|
|
float control_monitor_rms_output_roll_P(void) const;
|
|
float control_monitor_rms_output_roll_D(void) const;
|
|
float control_monitor_rms_output_pitch_P(void) const;
|
|
float control_monitor_rms_output_pitch_D(void) const;
|
|
float control_monitor_rms_output_pitch(void) const;
|
|
float control_monitor_rms_output_yaw(void) const;
|
|
};
|
|
|
|
#define AC_ATTITUDE_CONTROL_LOG_FORMAT(msg) { msg, sizeof(AC_AttitudeControl::log_Attitude), \
|
|
"ATT", "cccccCC", "RollIn,Roll,PitchIn,Pitch,YawIn,Yaw,NavYaw" }
|