Ardupilot2/libraries/AP_Mount/AP_Mount_SToRM32_serial.cpp

277 lines
8.0 KiB
C++

#include "AP_Mount_SToRM32_serial.h"
#if HAL_MOUNT_STORM32SERIAL_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <GCS_MAVLink/GCS_MAVLink.h>
#include <GCS_MAVLink/include/mavlink/v2.0/checksum.h>
#include <AP_SerialManager/AP_SerialManager.h>
// init - performs any required initialisation for this instance
void AP_Mount_SToRM32_serial::init()
{
const AP_SerialManager& serial_manager = AP::serialmanager();
_port = serial_manager.find_serial(AP_SerialManager::SerialProtocol_Gimbal, 0);
if (_port) {
_initialised = true;
}
AP_Mount_Backend::init();
}
// update mount position - should be called periodically
void AP_Mount_SToRM32_serial::update()
{
// exit immediately if not initialised
if (!_initialised) {
return;
}
read_incoming(); // read the incoming messages from the gimbal
// flag to trigger sending target angles to gimbal
bool resend_now = false;
// update based on mount mode
switch(get_mode()) {
// move mount to a "retracted" position. To-Do: remove support and replace with a relaxed mode?
case MAV_MOUNT_MODE_RETRACT: {
const Vector3f &target = _params.retract_angles.get();
_angle_rad.roll = ToRad(target.x);
_angle_rad.pitch = ToRad(target.y);
_angle_rad.yaw = ToRad(target.z);
_angle_rad.yaw_is_ef = false;
break;
}
// move mount to a neutral position, typically pointing forward
case MAV_MOUNT_MODE_NEUTRAL: {
const Vector3f &target = _params.neutral_angles.get();
_angle_rad.roll = ToRad(target.x);
_angle_rad.pitch = ToRad(target.y);
_angle_rad.yaw = ToRad(target.z);
_angle_rad.yaw_is_ef = false;
break;
}
// point to the angles given by a mavlink message
case MAV_MOUNT_MODE_MAVLINK_TARGETING:
switch (mavt_target.target_type) {
case MountTargetType::ANGLE:
_angle_rad = mavt_target.angle_rad;
break;
case MountTargetType::RATE:
update_angle_target_from_rate(mavt_target.rate_rads, _angle_rad);
break;
}
resend_now = true;
break;
// RC radio manual angle control, but with stabilization from the AHRS
case MAV_MOUNT_MODE_RC_TARGETING: {
// update targets using pilot's RC inputs
MountTarget rc_target {};
if (get_rc_rate_target(rc_target)) {
update_angle_target_from_rate(rc_target, _angle_rad);
} else if (get_rc_angle_target(rc_target)) {
_angle_rad = rc_target;
}
resend_now = true;
break;
}
// point mount to a GPS point given by the mission planner
case MAV_MOUNT_MODE_GPS_POINT:
if (get_angle_target_to_roi(_angle_rad)) {
resend_now = true;
}
break;
case MAV_MOUNT_MODE_HOME_LOCATION:
if (get_angle_target_to_home(_angle_rad)) {
resend_now = true;
}
break;
case MAV_MOUNT_MODE_SYSID_TARGET:
if (get_angle_target_to_sysid(_angle_rad)) {
resend_now = true;
}
break;
default:
// we do not know this mode so do nothing
break;
}
// resend target angles at least once per second
resend_now = resend_now || ((AP_HAL::millis() - _last_send) > AP_MOUNT_STORM32_SERIAL_RESEND_MS);
if ((AP_HAL::millis() - _last_send) > AP_MOUNT_STORM32_SERIAL_RESEND_MS*2) {
_reply_type = ReplyType_UNKNOWN;
}
if (can_send(resend_now)) {
if (resend_now) {
send_target_angles(_angle_rad);
get_angles();
_reply_type = ReplyType_ACK;
_reply_counter = 0;
_reply_length = get_reply_size(_reply_type);
} else {
get_angles();
_reply_type = ReplyType_DATA;
_reply_counter = 0;
_reply_length = get_reply_size(_reply_type);
}
}
}
// get attitude as a quaternion. returns true on success
bool AP_Mount_SToRM32_serial::get_attitude_quaternion(Quaternion& att_quat)
{
att_quat.from_euler(radians(_current_angle.x * 0.01f), radians(_current_angle.y * 0.01f), radians(_current_angle.z * 0.01f));
return true;
}
bool AP_Mount_SToRM32_serial::can_send(bool with_control) {
uint16_t required_tx = 1;
if (with_control) {
required_tx += sizeof(AP_Mount_SToRM32_serial::cmd_set_angles_struct);
}
return (_reply_type == ReplyType_UNKNOWN) && (_port->txspace() >= required_tx);
}
// send_target_angles
void AP_Mount_SToRM32_serial::send_target_angles(const MountTarget& angle_target_rad)
{
static cmd_set_angles_struct cmd_set_angles_data = {
0xFA,
0x0E,
0x11,
0, // pitch
0, // roll
0, // yaw
0, // flags
0, // type
0, // crc
};
// exit immediately if not initialised
if (!_initialised) {
return;
}
if ((size_t)_port->txspace() < sizeof(cmd_set_angles_data)) {
return;
}
// send CMD_SETANGLE (Note: reversed pitch and yaw)
cmd_set_angles_data.pitch = -degrees(angle_target_rad.pitch);
cmd_set_angles_data.roll = degrees(angle_target_rad.roll);
cmd_set_angles_data.yaw = -degrees(angle_target_rad.get_bf_yaw());
uint8_t* buf = (uint8_t*)&cmd_set_angles_data;
cmd_set_angles_data.crc = crc_calculate(&buf[1], sizeof(cmd_set_angles_data)-3);
for (uint8_t i = 0; i != sizeof(cmd_set_angles_data) ; i++) {
_port->write(buf[i]);
}
// store time of send
_last_send = AP_HAL::millis();
}
void AP_Mount_SToRM32_serial::get_angles() {
// exit immediately if not initialised
if (!_initialised) {
return;
}
if (_port->txspace() < 1) {
return;
}
_port->write('d');
};
uint8_t AP_Mount_SToRM32_serial::get_reply_size(ReplyType reply_type) {
switch (reply_type) {
case ReplyType_DATA:
return sizeof(SToRM32_reply_data_struct);
break;
case ReplyType_ACK:
return sizeof(SToRM32_reply_ack_struct);
break;
default:
return 0;
}
}
void AP_Mount_SToRM32_serial::read_incoming() {
uint8_t data;
int16_t numc;
numc = _port->available();
if (numc < 0 ){
return;
}
for (int16_t i = 0; i < numc; i++) { // Process bytes received
data = _port->read();
if (_reply_type == ReplyType_UNKNOWN) {
continue;
}
_buffer[_reply_counter++] = data;
if (_reply_counter == _reply_length) {
parse_reply();
switch (_reply_type) {
case ReplyType_ACK:
_reply_type = ReplyType_DATA;
_reply_length = get_reply_size(_reply_type);
_reply_counter = 0;
break;
case ReplyType_DATA:
_reply_type = ReplyType_UNKNOWN;
_reply_length = get_reply_size(_reply_type);
_reply_counter = 0;
break;
default:
_reply_length = get_reply_size(_reply_type);
_reply_counter = 0;
break;
}
}
}
}
void AP_Mount_SToRM32_serial::parse_reply() {
uint16_t crc;
bool crc_ok;
switch (_reply_type) {
case ReplyType_DATA:
crc = crc_calculate(&_buffer[0], sizeof(_buffer.data) - 3);
crc_ok = crc == _buffer.data.crc;
if (!crc_ok) {
break;
}
// Parse angles (Note: reversed pitch and yaw) to match ardupilot coordinate system
_current_angle.x = _buffer.data.imu1_roll;
_current_angle.y = -_buffer.data.imu1_pitch;
_current_angle.z = -_buffer.data.imu1_yaw;
break;
default:
break;
}
}
#endif // HAL_MOUNT_STORM32SERIAL_ENABLED