Ardupilot2/ArduCopter/Attitude.cpp
2015-09-24 16:57:47 +09:00

326 lines
12 KiB
C++

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
// get_smoothing_gain - returns smoothing gain to be passed into attitude_control.angle_ef_roll_pitch_rate_ef_yaw_smooth
// result is a number from 2 to 12 with 2 being very sluggish and 12 being very crisp
float Copter::get_smoothing_gain()
{
return (2.0f + (float)g.rc_feel_rp/10.0f);
}
// get_pilot_desired_angle - transform pilot's roll or pitch input into a desired lean angle
// returns desired angle in centi-degrees
void Copter::get_pilot_desired_lean_angles(float roll_in, float pitch_in, float &roll_out, float &pitch_out, float angle_max)
{
// sanity check angle max parameter
aparm.angle_max = constrain_int16(aparm.angle_max,1000,8000);
// limit max lean angle
angle_max = constrain_float(angle_max, 1000, aparm.angle_max);
// scale roll_in, pitch_in to ANGLE_MAX parameter range
float scaler = aparm.angle_max/(float)ROLL_PITCH_INPUT_MAX;
roll_in *= scaler;
pitch_in *= scaler;
// do circular limit
float total_in = pythagorous2((float)pitch_in, (float)roll_in);
if (total_in > angle_max) {
float ratio = angle_max / total_in;
roll_in *= ratio;
pitch_in *= ratio;
}
// do lateral tilt to euler roll conversion
roll_in = (18000/M_PI_F) * atanf(cosf(pitch_in*(M_PI_F/18000))*tanf(roll_in*(M_PI_F/18000)));
// return
roll_out = roll_in;
pitch_out = pitch_in;
}
// get_pilot_desired_heading - transform pilot's yaw input into a
// desired yaw rate
// returns desired yaw rate in centi-degrees per second
float Copter::get_pilot_desired_yaw_rate(int16_t stick_angle)
{
// convert pilot input to the desired yaw rate
return stick_angle * g.acro_yaw_p;
}
// check for ekf yaw reset and adjust target heading
void Copter::check_ekf_yaw_reset()
{
float yaw_angle_change_rad = 0.0f;
uint32_t new_ekfYawReset_ms = ahrs.getLastYawResetAngle(yaw_angle_change_rad);
if (new_ekfYawReset_ms != ekfYawReset_ms) {
attitude_control.shift_ef_yaw_target(ToDeg(yaw_angle_change_rad) * 100.0f);
ekfYawReset_ms = new_ekfYawReset_ms;
}
}
/*************************************************************
* yaw controllers
*************************************************************/
// get_roi_yaw - returns heading towards location held in roi_WP
// should be called at 100hz
float Copter::get_roi_yaw()
{
static uint8_t roi_yaw_counter = 0; // used to reduce update rate to 100hz
roi_yaw_counter++;
if (roi_yaw_counter >= 4) {
roi_yaw_counter = 0;
yaw_look_at_WP_bearing = pv_get_bearing_cd(inertial_nav.get_position(), roi_WP);
}
return yaw_look_at_WP_bearing;
}
float Copter::get_look_ahead_yaw()
{
const Vector3f& vel = inertial_nav.get_velocity();
float speed = pythagorous2(vel.x,vel.y);
// Commanded Yaw to automatically look ahead.
if (position_ok() && (speed > YAW_LOOK_AHEAD_MIN_SPEED)) {
yaw_look_ahead_bearing = degrees(atan2f(vel.y,vel.x))*100.0f;
}
return yaw_look_ahead_bearing;
}
/*************************************************************
* throttle control
****************************************************************/
// update_thr_average - update estimated throttle required to hover (if necessary)
// should be called at 100hz
void Copter::update_thr_average()
{
// ensure throttle_average has been initialised
if( is_zero(throttle_average) ) {
throttle_average = g.throttle_mid;
// update position controller
pos_control.set_throttle_hover(throttle_average);
}
// if not armed or landed exit
if (!motors.armed() || ap.land_complete) {
return;
}
// get throttle output
float throttle = motors.get_throttle();
// calc average throttle if we are in a level hover
if (throttle > g.throttle_min && abs(climb_rate) < 60 && labs(ahrs.roll_sensor) < 500 && labs(ahrs.pitch_sensor) < 500) {
throttle_average = throttle_average * 0.99f + throttle * 0.01f;
// update position controller
pos_control.set_throttle_hover(throttle_average);
}
}
// set_throttle_takeoff - allows parents to tell throttle controller we are taking off so I terms can be cleared
void Copter::set_throttle_takeoff()
{
// tell position controller to reset alt target and reset I terms
pos_control.init_takeoff();
// tell motors to do a slow start
motors.slow_start(true);
}
// get_pilot_desired_throttle - transform pilot's throttle input to make cruise throttle mid stick
// used only for manual throttle modes
// returns throttle output 0 to 1000
int16_t Copter::get_pilot_desired_throttle(int16_t throttle_control)
{
int16_t throttle_out;
int16_t mid_stick = channel_throttle->get_control_mid();
// ensure reasonable throttle values
throttle_control = constrain_int16(throttle_control,0,1000);
g.throttle_mid = constrain_int16(g.throttle_mid,g.throttle_min+50,700);
// check throttle is above, below or in the deadband
if (throttle_control < mid_stick) {
// below the deadband
throttle_out = g.throttle_min + ((float)(throttle_control-g.throttle_min))*((float)(g.throttle_mid - g.throttle_min))/((float)(mid_stick-g.throttle_min));
}else if(throttle_control > mid_stick) {
// above the deadband
throttle_out = g.throttle_mid + ((float)(throttle_control-mid_stick)) * (float)(1000-g.throttle_mid) / (float)(1000-mid_stick);
}else{
// must be in the deadband
throttle_out = g.throttle_mid;
}
return throttle_out;
}
// get_pilot_desired_climb_rate - transform pilot's throttle input to
// climb rate in cm/s. we use radio_in instead of control_in to get the full range
// without any deadzone at the bottom
float Copter::get_pilot_desired_climb_rate(float throttle_control)
{
// throttle failsafe check
if( failsafe.radio ) {
return 0.0f;
}
float desired_rate = 0.0f;
float mid_stick = channel_throttle->get_control_mid();
float deadband_top = mid_stick + g.throttle_deadzone;
float deadband_bottom = mid_stick - g.throttle_deadzone;
// ensure a reasonable throttle value
throttle_control = constrain_float(throttle_control,g.throttle_min,1000.0f);
// ensure a reasonable deadzone
g.throttle_deadzone = constrain_int16(g.throttle_deadzone, 0, 400);
// check throttle is above, below or in the deadband
if (throttle_control < deadband_bottom) {
// below the deadband
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_bottom) / (deadband_bottom-g.throttle_min);
}else if (throttle_control > deadband_top) {
// above the deadband
desired_rate = g.pilot_velocity_z_max * (throttle_control-deadband_top) / (1000.0f-deadband_top);
}else{
// must be in the deadband
desired_rate = 0.0f;
}
// desired climb rate for logging
desired_climb_rate = desired_rate;
return desired_rate;
}
// get_non_takeoff_throttle - a throttle somewhere between min and mid throttle which should not lead to a takeoff
float Copter::get_non_takeoff_throttle()
{
return (g.throttle_mid / 2.0f);
}
float Copter::get_takeoff_trigger_throttle()
{
return channel_throttle->get_control_mid() + g.takeoff_trigger_dz;
}
// get_throttle_pre_takeoff - convert pilot's input throttle to a throttle output before take-off
// used only for althold, loiter, hybrid flight modes
// returns throttle output 0 to 1000
float Copter::get_throttle_pre_takeoff(float input_thr)
{
// exit immediately if input_thr is zero
if (input_thr <= 0.0f) {
return 0.0f;
}
// TODO: does this parameter sanity check really belong here?
g.throttle_mid = constrain_int16(g.throttle_mid,g.throttle_min+50,700);
float in_min = g.throttle_min;
float in_max = get_takeoff_trigger_throttle();
#if FRAME_CONFIG == HELI_FRAME
// helicopters swash will move from bottom to 1/2 of mid throttle
float out_min = 0;
#else
// multicopters will output between spin-when-armed and 1/2 of mid throttle
float out_min = motors.get_throttle_warn();
#endif
float out_max = get_non_takeoff_throttle();
if ((g.throttle_behavior & THR_BEHAVE_FEEDBACK_FROM_MID_STICK) != 0) {
in_min = channel_throttle->get_control_mid();
}
float input_range = in_max-in_min;
float output_range = out_max-out_min;
// sanity check ranges
if (input_range <= 0.0f || output_range <= 0.0f) {
return 0.0f;
}
return constrain_float(out_min + (input_thr-in_min)*output_range/input_range, out_min, out_max);
}
// get_surface_tracking_climb_rate - hold copter at the desired distance above the ground
// returns climb rate (in cm/s) which should be passed to the position controller
float Copter::get_surface_tracking_climb_rate(int16_t target_rate, float current_alt_target, float dt)
{
static uint32_t last_call_ms = 0;
float distance_error;
float velocity_correction;
float current_alt = inertial_nav.get_altitude();
uint32_t now = millis();
// reset target altitude if this controller has just been engaged
if (now - last_call_ms > SONAR_TIMEOUT_MS) {
target_sonar_alt = sonar_alt + current_alt_target - current_alt;
}
last_call_ms = now;
// adjust sonar target alt if motors have not hit their limits
if ((target_rate<0 && !motors.limit.throttle_lower) || (target_rate>0 && !motors.limit.throttle_upper)) {
target_sonar_alt += target_rate * dt;
}
// do not let target altitude get too far from current altitude above ground
// Note: the 750cm limit is perhaps too wide but is consistent with the regular althold limits and helps ensure a smooth transition
target_sonar_alt = constrain_float(target_sonar_alt,sonar_alt-pos_control.get_leash_down_z(),sonar_alt+pos_control.get_leash_up_z());
// calc desired velocity correction from target sonar alt vs actual sonar alt (remove the error already passed to Altitude controller to avoid oscillations)
distance_error = (target_sonar_alt - sonar_alt) - (current_alt_target - current_alt);
velocity_correction = distance_error * g.sonar_gain;
velocity_correction = constrain_float(velocity_correction, -THR_SURFACE_TRACKING_VELZ_MAX, THR_SURFACE_TRACKING_VELZ_MAX);
// return combined pilot climb rate + rate to correct sonar alt error
return (target_rate + velocity_correction);
}
// set_accel_throttle_I_from_pilot_throttle - smoothes transition from pilot controlled throttle to autopilot throttle
void Copter::set_accel_throttle_I_from_pilot_throttle(int16_t pilot_throttle)
{
// shift difference between pilot's throttle and hover throttle into accelerometer I
g.pid_accel_z.set_integrator(pilot_throttle-throttle_average);
}
// updates position controller's maximum altitude using fence and EKF limits
void Copter::update_poscon_alt_max()
{
float alt_limit_cm = 0.0f; // interpreted as no limit if left as zero
#if AC_FENCE == ENABLED
// set fence altitude limit in position controller
if ((fence.get_enabled_fences() & AC_FENCE_TYPE_ALT_MAX) != 0) {
alt_limit_cm = pv_alt_above_origin(fence.get_safe_alt()*100.0f);
}
#endif
// get alt limit from EKF (limited during optical flow flight)
float ekf_limit_cm = 0.0f;
if (inertial_nav.get_hgt_ctrl_limit(ekf_limit_cm)) {
if ((alt_limit_cm <= 0.0f) || (ekf_limit_cm < alt_limit_cm)) {
alt_limit_cm = ekf_limit_cm;
}
}
// pass limit to pos controller
pos_control.set_alt_max(alt_limit_cm);
}
// rotate vector from vehicle's perspective to North-East frame
void Copter::rotate_body_frame_to_NE(float &x, float &y)
{
float ne_x = x*ahrs.cos_yaw() - y*ahrs.sin_yaw();
float ne_y = x*ahrs.sin_yaw() + y*ahrs.cos_yaw();
x = ne_x;
y = ne_y;
}