Ardupilot2/ArduPlane/commands_logic.pde
2012-06-13 21:00:20 +02:00

592 lines
16 KiB
Plaintext

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/********************************************************************************/
// Command Event Handlers
/********************************************************************************/
static void
handle_process_nav_cmd()
{
// reset navigation integrators
// -------------------------
reset_I();
gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nav_command.id);
switch(next_nav_command.id){
case MAV_CMD_NAV_TAKEOFF:
do_takeoff();
break;
case MAV_CMD_NAV_WAYPOINT: // Navigate to Waypoint
do_nav_wp();
break;
case MAV_CMD_NAV_LAND: // LAND to Waypoint
do_land();
break;
case MAV_CMD_NAV_LOITER_UNLIM: // Loiter indefinitely
do_loiter_unlimited();
break;
case MAV_CMD_NAV_LOITER_TURNS: // Loiter N Times
do_loiter_turns();
break;
case MAV_CMD_NAV_LOITER_TIME:
do_loiter_time();
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
do_RTL();
break;
default:
break;
}
}
static void
handle_process_condition_command()
{
gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nonnav_command.id);
switch(next_nonnav_command.id){
case MAV_CMD_CONDITION_DELAY:
do_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE:
do_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
do_change_alt();
break;
default:
break;
}
}
static void handle_process_do_command()
{
gcs_send_text_fmt(PSTR("Executing command ID #%i"),next_nonnav_command.id);
switch(next_nonnav_command.id){
case MAV_CMD_DO_JUMP:
do_jump();
break;
case MAV_CMD_DO_CHANGE_SPEED:
do_change_speed();
break;
case MAV_CMD_DO_SET_HOME:
do_set_home();
break;
case MAV_CMD_DO_SET_SERVO:
do_set_servo();
break;
case MAV_CMD_DO_SET_RELAY:
do_set_relay();
break;
case MAV_CMD_DO_REPEAT_SERVO:
do_repeat_servo();
break;
case MAV_CMD_DO_REPEAT_RELAY:
do_repeat_relay();
break;
#if CAMERA == ENABLED
case MAV_CMD_DO_CONTROL_VIDEO: // Control on-board camera capturing. |Camera ID (-1 for all)| Transmission: 0: disabled, 1: enabled compressed, 2: enabled raw| Transmission mode: 0: video stream, >0: single images every n seconds (decimal)| Recording: 0: disabled, 1: enabled compressed, 2: enabled raw| Empty| Empty| Empty|
break;
case MAV_CMD_DO_DIGICAM_CONFIGURE: // Mission command to configure an on-board camera controller system. |Modes: P, TV, AV, M, Etc| Shutter speed: Divisor number for one second| Aperture: F stop number| ISO number e.g. 80, 100, 200, Etc| Exposure type enumerator| Command Identity| Main engine cut-off time before camera trigger in seconds/10 (0 means no cut-off)|
break;
case MAV_CMD_DO_DIGICAM_CONTROL: // Mission command to control an on-board camera controller system. |Session control e.g. show/hide lens| Zoom's absolute position| Zooming step value to offset zoom from the current position| Focus Locking, Unlocking or Re-locking| Shooting Command| Command Identity| Empty|
break;
#endif
#if MOUNT == ENABLED
// Sets the region of interest (ROI) for a sensor set or the
// vehicle itself. This can then be used by the vehicles control
// system to control the vehicle attitude and the attitude of various
// devices such as cameras.
// |Region of interest mode. (see MAV_ROI enum)| Waypoint index/ target ID. (see MAV_ROI enum)| ROI index (allows a vehicle to manage multiple cameras etc.)| Empty| x the location of the fixed ROI (see MAV_FRAME)| y| z|
case MAV_CMD_DO_SET_ROI:
camera_mount.set_roi_cmd();
break;
case MAV_CMD_DO_MOUNT_CONFIGURE: // Mission command to configure a camera mount |Mount operation mode (see MAV_CONFIGURE_MOUNT_MODE enum)| stabilize roll? (1 = yes, 0 = no)| stabilize pitch? (1 = yes, 0 = no)| stabilize yaw? (1 = yes, 0 = no)| Empty| Empty| Empty|
camera_mount.configure_cmd();
break;
case MAV_CMD_DO_MOUNT_CONTROL: // Mission command to control a camera mount |pitch(deg*100) or lat, depending on mount mode.| roll(deg*100) or lon depending on mount mode| yaw(deg*100) or alt (in cm) depending on mount mode| Empty| Empty| Empty| Empty|
camera_mount.control_cmd();
break;
#endif
}
}
static void handle_no_commands()
{
gcs_send_text_fmt(PSTR("Returning to Home"));
next_nav_command = home;
next_nav_command.alt = read_alt_to_hold();
next_nav_command.id = MAV_CMD_NAV_LOITER_UNLIM;
nav_command_ID = MAV_CMD_NAV_LOITER_UNLIM;
non_nav_command_ID = WAIT_COMMAND;
handle_process_nav_cmd();
}
/********************************************************************************/
// Verify command Handlers
/********************************************************************************/
static bool verify_nav_command() // Returns true if command complete
{
switch(nav_command_ID) {
case MAV_CMD_NAV_TAKEOFF:
return verify_takeoff();
break;
case MAV_CMD_NAV_LAND:
return verify_land();
break;
case MAV_CMD_NAV_WAYPOINT:
return verify_nav_wp();
break;
case MAV_CMD_NAV_LOITER_UNLIM:
return verify_loiter_unlim();
break;
case MAV_CMD_NAV_LOITER_TURNS:
return verify_loiter_turns();
break;
case MAV_CMD_NAV_LOITER_TIME:
return verify_loiter_time();
break;
case MAV_CMD_NAV_RETURN_TO_LAUNCH:
return verify_RTL();
break;
default:
gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_nav: Invalid or no current Nav cmd"));
return false;
break;
}
}
static bool verify_condition_command() // Returns true if command complete
{
switch(non_nav_command_ID) {
case NO_COMMAND:
break;
case MAV_CMD_CONDITION_DELAY:
return verify_wait_delay();
break;
case MAV_CMD_CONDITION_DISTANCE:
return verify_within_distance();
break;
case MAV_CMD_CONDITION_CHANGE_ALT:
return verify_change_alt();
break;
case WAIT_COMMAND:
return 0;
break;
default:
gcs_send_text_P(SEVERITY_HIGH,PSTR("verify_conditon: Invalid or no current Condition cmd"));
break;
}
return false;
}
/********************************************************************************/
// Nav (Must) commands
/********************************************************************************/
static void do_RTL(void)
{
control_mode = RTL;
crash_timer = 0;
next_WP = home;
// Altitude to hold over home
// Set by configuration tool
// -------------------------
next_WP.alt = read_alt_to_hold();
if (g.log_bitmask & MASK_LOG_MODE)
Log_Write_Mode(control_mode);
}
static void do_takeoff()
{
set_next_WP(&next_nav_command);
// pitch in deg, airspeed m/s, throttle %, track WP 1 or 0
takeoff_pitch = (int)next_nav_command.p1 * 100;
//Serial.printf_P(PSTR("TO pitch:")); Serial.println(takeoff_pitch);
//Serial.printf_P(PSTR("home.alt:")); Serial.println(home.alt);
takeoff_altitude = next_nav_command.alt;
//Serial.printf_P(PSTR("takeoff_altitude:")); Serial.println(takeoff_altitude);
next_WP.lat = home.lat + 1000; // so we don't have bad calcs
next_WP.lng = home.lng + 1000; // so we don't have bad calcs
takeoff_complete = false; // set flag to use gps ground course during TO. IMU will be doing yaw drift correction
// Flag also used to override "on the ground" throttle disable
}
static void do_nav_wp()
{
set_next_WP(&next_nav_command);
}
static void do_land()
{
set_next_WP(&next_nav_command);
}
static void do_loiter_unlimited()
{
set_next_WP(&next_nav_command);
}
static void do_loiter_turns()
{
set_next_WP(&next_nav_command);
loiter_total = next_nav_command.p1 * 360;
}
static void do_loiter_time()
{
set_next_WP(&next_nav_command);
loiter_time = millis();
loiter_time_max = next_nav_command.p1; // units are (seconds * 10)
}
/********************************************************************************/
// Verify Nav (Must) commands
/********************************************************************************/
static bool verify_takeoff()
{
if (g_gps->ground_speed > 300){
if (hold_course == -1) {
// save our current course to take off
if(g.compass_enabled) {
hold_course = ahrs.yaw_sensor;
} else {
hold_course = g_gps->ground_course;
}
}
}
if (hold_course != -1) {
// recalc bearing error with hold_course;
nav_bearing = hold_course;
// recalc bearing error
calc_bearing_error();
}
if (current_loc.alt > takeoff_altitude) {
hold_course = -1;
takeoff_complete = true;
return true;
} else {
return false;
}
}
// we are executing a landing
static bool verify_land()
{
// we don't 'verify' landing in the sense that it never completes,
// so we don't verify command completion. Instead we use this to
// adjust final landing parameters
// Set land_complete if we are within 2 seconds distance or within
// 3 meters altitude of the landing point
if (((wp_distance > 0) && (wp_distance <= (2*g_gps->ground_speed/100)))
|| (current_loc.alt <= next_WP.alt + 300)){
land_complete = 1;
if(hold_course == -1) {
// we have just reached the threshold of 2 seconds or 3
// meters to landing. We now don't want to do any radical
// turns, as rolling could put the wings into the runway.
// To prevent further turns we set hold_course to the
// current heading. Previously we set this to
// crosstrack_bearing, but the xtrack bearing can easily
// be quite large at this point, and that could induce a
// sudden large roll correction which is very nasty at
// this point in the landing.
hold_course = ahrs.yaw_sensor;
}
}
if (hold_course != -1){
// recalc bearing error with hold_course;
nav_bearing = hold_course;
// recalc bearing error
calc_bearing_error();
}
update_crosstrack();
return false;
}
static bool verify_nav_wp()
{
hold_course = -1;
update_crosstrack();
if ((wp_distance > 0) && (wp_distance <= g.waypoint_radius)) {
gcs_send_text_fmt(PSTR("Reached Waypoint #%i"),nav_command_index);
return true;
}
// add in a more complex case
// Doug to do
if(loiter_sum > 300){
gcs_send_text_P(SEVERITY_MEDIUM,PSTR("Missed WP"));
return true;
}
return false;
}
static bool verify_loiter_unlim()
{
update_loiter();
calc_bearing_error();
return false;
}
static bool verify_loiter_time()
{
update_loiter();
calc_bearing_error();
if ((millis() - loiter_time) > (unsigned long)loiter_time_max * 10000l) { // scale loiter_time_max from (sec*10) to milliseconds
gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER time complete"));
return true;
}
return false;
}
static bool verify_loiter_turns()
{
update_loiter();
calc_bearing_error();
if(loiter_sum > loiter_total) {
loiter_total = 0;
gcs_send_text_P(SEVERITY_LOW,PSTR("verify_nav: LOITER orbits complete"));
// clear the command queue;
return true;
}
return false;
}
static bool verify_RTL()
{
if (wp_distance <= g.waypoint_radius) {
gcs_send_text_P(SEVERITY_LOW,PSTR("Reached home"));
return true;
}else{
return false;
}
}
/********************************************************************************/
// Condition (May) commands
/********************************************************************************/
static void do_wait_delay()
{
condition_start = millis();
condition_value = next_nonnav_command.lat * 1000; // convert to milliseconds
}
static void do_change_alt()
{
condition_rate = abs((int)next_nonnav_command.lat);
condition_value = next_nonnav_command.alt;
if(condition_value < current_loc.alt) condition_rate = -condition_rate;
target_altitude = current_loc.alt + (condition_rate / 10); // Divide by ten for 10Hz update
next_WP.alt = condition_value; // For future nav calculations
offset_altitude = 0; // For future nav calculations
}
static void do_within_distance()
{
condition_value = next_nonnav_command.lat;
}
/********************************************************************************/
// Verify Condition (May) commands
/********************************************************************************/
static bool verify_wait_delay()
{
if ((unsigned)(millis() - condition_start) > condition_value){
condition_value = 0;
return true;
}
return false;
}
static bool verify_change_alt()
{
if( (condition_rate>=0 && current_loc.alt >= condition_value) || (condition_rate<=0 && current_loc.alt <= condition_value)) {
condition_value = 0;
return true;
}
target_altitude += condition_rate / 10;
return false;
}
static bool verify_within_distance()
{
if (wp_distance < condition_value){
condition_value = 0;
return true;
}
return false;
}
/********************************************************************************/
// Do (Now) commands
/********************************************************************************/
static void do_loiter_at_location()
{
next_WP = current_loc;
}
static void do_jump()
{
struct Location temp;
gcs_send_text_fmt(PSTR("In jump. Jumps left: %i"),next_nonnav_command.lat);
if(next_nonnav_command.lat > 0) {
nav_command_ID = NO_COMMAND;
next_nav_command.id = NO_COMMAND;
non_nav_command_ID = NO_COMMAND;
temp = get_cmd_with_index(g.command_index);
temp.lat = next_nonnav_command.lat - 1; // Decrement repeat counter
set_cmd_with_index(temp, g.command_index);
gcs_send_text_fmt(PSTR("setting command index: %i"),next_nonnav_command.p1 - 1);
g.command_index.set_and_save(next_nonnav_command.p1 - 1);
nav_command_index = next_nonnav_command.p1 - 1;
next_WP = prev_WP; // Need to back "next_WP" up as it was set to the next waypoint following the jump
process_next_command();
} else if (next_nonnav_command.lat == -1) { // A repeat count of -1 = repeat forever
nav_command_ID = NO_COMMAND;
non_nav_command_ID = NO_COMMAND;
gcs_send_text_fmt(PSTR("setting command index: %i"),next_nonnav_command.p1 - 1);
g.command_index.set_and_save(next_nonnav_command.p1 - 1);
nav_command_index = next_nonnav_command.p1 - 1;
next_WP = prev_WP; // Need to back "next_WP" up as it was set to the next waypoint following the jump
process_next_command();
}
}
static void do_change_speed()
{
switch (next_nonnav_command.p1)
{
case 0: // Airspeed
if(next_nonnav_command.alt > 0)
g.airspeed_cruise.set(next_nonnav_command.alt * 100);
break;
case 1: // Ground speed
g.min_gndspeed.set(next_nonnav_command.alt * 100);
break;
}
if(next_nonnav_command.lat > 0)
g.throttle_cruise.set(next_nonnav_command.lat);
}
static void do_set_home()
{
if(next_nonnav_command.p1 == 1 && GPS_enabled) {
init_home();
} else {
home.id = MAV_CMD_NAV_WAYPOINT;
home.lng = next_nonnav_command.lng; // Lon * 10**7
home.lat = next_nonnav_command.lat; // Lat * 10**7
home.alt = max(next_nonnav_command.alt, 0);
home_is_set = true;
}
}
static void do_set_servo()
{
APM_RC.OutputCh(next_nonnav_command.p1 - 1, next_nonnav_command.alt);
}
static void do_set_relay()
{
if (next_nonnav_command.p1 == 1) {
relay.on();
} else if (next_nonnav_command.p1 == 0) {
relay.off();
}else{
relay.toggle();
}
}
static void do_repeat_servo()
{
event_id = next_nonnav_command.p1 - 1;
if(next_nonnav_command.p1 >= CH_5 + 1 && next_nonnav_command.p1 <= CH_8 + 1) {
event_timer = 0;
event_delay = next_nonnav_command.lng * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds)
event_repeat = next_nonnav_command.lat * 2;
event_value = next_nonnav_command.alt;
switch(next_nonnav_command.p1) {
case CH_5:
event_undo_value = g.rc_5.radio_trim;
break;
case CH_6:
event_undo_value = g.rc_6.radio_trim;
break;
case CH_7:
event_undo_value = g.rc_7.radio_trim;
break;
case CH_8:
event_undo_value = g.rc_8.radio_trim;
break;
}
update_events();
}
}
static void do_repeat_relay()
{
event_id = RELAY_TOGGLE;
event_timer = 0;
event_delay = next_nonnav_command.lat * 500.0; // /2 (half cycle time) * 1000 (convert to milliseconds)
event_repeat = next_nonnav_command.alt * 2;
update_events();
}