Ardupilot2/libraries/AP_HAL_AVR/RCOutput_APM1.cpp
Gustavo Jose de Sousa a80ae0cde3 AP_HAL_AVR: standardize inclusion of libaries headers
This commit changes the way libraries headers are included in source files:

 - If the header is in the same directory the source belongs to, so the
 notation '#include ""' is used with the path relative to the directory
 containing the source.

 - If the header is outside the directory containing the source, then we use
 the notation '#include <>' with the path relative to libraries folder.

Some of the advantages of such approach:

 - Only one search path for libraries headers.

 - OSs like Windows may have a better lookup time.
2015-08-19 20:42:35 +09:00

215 lines
7.2 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_APM1
#include <avr/interrupt.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_HAL_AVR.h"
#include "RCOutput.h"
using namespace AP_HAL_AVR;
extern const AP_HAL::HAL& hal;
/* No init argument required */
void APM1RCOutput::init(void* machtnichts) {
// --------------------- TIMER1: CH_3, CH_4, and CH_10 ---------------
hal.gpio->pinMode(11,HAL_GPIO_OUTPUT); // CH_10 (PB5/OC1A)
hal.gpio->pinMode(12,HAL_GPIO_OUTPUT); // CH_3 (PB6/OC1B)
hal.gpio->pinMode(13,HAL_GPIO_OUTPUT); // CH_4 (PB7/OC1C)
// WGM: 1 1 1 0. Clear Timer on Compare, TOP is ICR1.
// CS11: prescale by 8 => 0.5us tick
TCCR1A =((1<<WGM11));
TCCR1B = (1<<WGM13)|(1<<WGM12)|(1<<CS11);
ICR1 = 40000; // 0.5us tick => 50hz freq
OCR1A = 0xFFFF; // Init OCR registers to nil output signal
OCR1B = 0xFFFF;
OCR1C = 0xFFFF;
//--------------- TIMER3: CH_7, CH_8, and CH_11 ---------------------
hal.gpio->pinMode(5,HAL_GPIO_OUTPUT); // CH_11 (PE3/OC3A)
hal.gpio->pinMode(2,HAL_GPIO_OUTPUT); // CH_8 (PE4/OC3B)
hal.gpio->pinMode(3,HAL_GPIO_OUTPUT); // CH_7 (PE5/OC3C)
// WGM: 1 1 1 0. Clear timer on Compare, TOP is ICR3
// CS31: prescale by 8 => 0.5us tick
TCCR3A =((1<<WGM31));
TCCR3B = (1<<WGM33)|(1<<WGM32)|(1<<CS31);
OCR3A = 0xFFFF; // Init OCR registers to nil output signal
OCR3B = 0xFFFF;
OCR3C = 0xFFFF;
ICR3 = 40000; // 0.5us tick => 50hz freq
//--------------- TIMER4: CH_6 and CH_5 ----------------------------
// NB TIMER4 is shared with PPM input from RCInput_APM1.cpp
// The TIMER4 registers are assumed to be setup already.
hal.gpio->pinMode(7,HAL_GPIO_OUTPUT); // CH_5 (PH4/OC4B)
hal.gpio->pinMode(8,HAL_GPIO_OUTPUT); // CH_6 (PH5/OC4C)
//--------------- TIMER5: CH_1, CH_2 and CH_9 -----------------------
hal.gpio->pinMode(46, HAL_GPIO_OUTPUT); // CH_9 (PL3/OC5A)
hal.gpio->pinMode(45, HAL_GPIO_OUTPUT); // CH_1 (PL4/OC5B)
hal.gpio->pinMode(44, HAL_GPIO_OUTPUT); // CH_2 (PL5/OC5C)
// WGM: 1 1 1 0. Clear timer on Compare, TOP is ICR5
// CS51: prescale by 8 => 0.5us tick
TCCR5A =((1<<WGM51));
TCCR5B = (1<<WGM53)|(1<<WGM52)|(1<<CS51);
OCR5A = 0xFFFF; // Init OCR registers to nil output signal
OCR5B = 0xFFFF;
OCR5C = 0xFFFF;
ICR5 = 40000; // 0.5us tick => 50hz freq
}
/* Output freq (1/period) control */
void APM1RCOutput::set_freq(uint32_t chmask, uint16_t freq_hz) {
uint16_t icr = _timer_period(freq_hz);
if ((chmask & ( _BV(CH_1) | _BV(CH_2) | _BV(CH_9))) != 0) {
ICR5 = icr;
}
if ((chmask & ( _BV(CH_3) | _BV(CH_4) | _BV(CH_10))) != 0) {
ICR1 = icr;
}
if ((chmask & ( _BV(CH_7) | _BV(CH_8) | _BV(CH_11))) != 0) {
ICR3 = icr;
}
/* No change permitted for CH_5 and CH_6 - that ICR register is
* shared with the input capture for RCInput */
}
uint16_t APM1RCOutput::get_freq(uint8_t ch) {
uint16_t icr;
switch (ch) {
case CH_3:
case CH_4:
case CH_10:
icr = ICR1;
break;
/* CH_5 and CH_6 share TIMER4 with input capture.
* The period is specified in OCR4A rather than the ICR. */
case CH_5:
case CH_6:
icr = OCR4A;
break;
case CH_7:
case CH_8:
case CH_11:
icr = ICR3;
break;
case CH_1:
case CH_2:
case CH_9:
icr = ICR5;
break;
default:
return 0;
}
/* transform to period by inverse of _time_period(icr). */
return (2000000UL / icr);
}
/* Output active/highZ control, either by single channel at a time
* or a mask of channels */
void APM1RCOutput::enable_ch(uint8_t ch) {
switch(ch) {
case 0: TCCR5A |= (1<<COM5B1); break; // CH_1 : OC5B
case 1: TCCR5A |= (1<<COM5C1); break; // CH_2 : OC5C
case 2: TCCR1A |= (1<<COM1B1); break; // CH_3 : OC1B
case 3: TCCR1A |= (1<<COM1C1); break; // CH_4 : OC1C
case 4: TCCR4A |= (1<<COM4C1); break; // CH_5 : OC4C
case 5: TCCR4A |= (1<<COM4B1); break; // CH_6 : OC4B
case 6: TCCR3A |= (1<<COM3C1); break; // CH_7 : OC3C
case 7: TCCR3A |= (1<<COM3B1); break; // CH_8 : OC3B
case 8: TCCR5A |= (1<<COM5A1); break; // CH_9 : OC5A
case 9: TCCR1A |= (1<<COM1A1); break; // CH_10: OC1A
case 10: TCCR3A |= (1<<COM3A1); break; // CH_11: OC3A
}
}
void APM1RCOutput::disable_ch(uint8_t ch) {
switch(ch) {
case 0: TCCR5A &= ~(1<<COM5B1); break; // CH_1 : OC5B
case 1: TCCR5A &= ~(1<<COM5C1); break; // CH_2 : OC5C
case 2: TCCR1A &= ~(1<<COM1B1); break; // CH_3 : OC1B
case 3: TCCR1A &= ~(1<<COM1C1); break; // CH_4 : OC1C
case 4: TCCR4A &= ~(1<<COM4C1); break; // CH_5 : OC4C
case 5: TCCR4A &= ~(1<<COM4B1); break; // CH_6 : OC4B
case 6: TCCR3A &= ~(1<<COM3C1); break; // CH_7 : OC3C
case 7: TCCR3A &= ~(1<<COM3B1); break; // CH_8 : OC3B
case 8: TCCR5A &= ~(1<<COM5A1); break; // CH_9 : OC5A
case 9: TCCR1A &= ~(1<<COM1A1); break; // CH_10: OC1A
case 10: TCCR3A &= ~(1<<COM3A1); break; // CH_11: OC3A
}
}
/* constrain pwm to be between min and max pulsewidth. */
static inline uint16_t constrain_period(uint16_t p) {
if (p > RC_OUTPUT_MAX_PULSEWIDTH) return RC_OUTPUT_MAX_PULSEWIDTH;
if (p < RC_OUTPUT_MIN_PULSEWIDTH) return RC_OUTPUT_MIN_PULSEWIDTH;
return p;
}
/* Output, either single channel or bulk array of channels */
void APM1RCOutput::write(uint8_t ch, uint16_t period_us) {
/* constrain, then scale from 1us resolution (input units)
* to 0.5us (timer units) */
uint16_t pwm = constrain_period(period_us) << 1;
switch(ch)
{
case 0: OCR5B=pwm; break; //ch1
case 1: OCR5C=pwm; break; //ch2
case 2: OCR1B=pwm; break; //ch3
case 3: OCR1C=pwm; break; //ch4
case 4: OCR4C=pwm; break; //ch5
case 5: OCR4B=pwm; break; //ch6
case 6: OCR3C=pwm; break; //ch7
case 7: OCR3B=pwm; break; //ch8
case 8: OCR5A=pwm; break; //ch9, PL3
case 9: OCR1A=pwm; break; //ch10, PB5
case 10: OCR3A=pwm; break; //ch11, PE3
}
}
void APM1RCOutput::write(uint8_t ch, uint16_t* period_us, uint8_t len) {
for (int i = 0; i < len; i++) {
write(i + ch, period_us[i]);
}
}
/* Read back current output state, as either single channel or
* array of channels. */
uint16_t APM1RCOutput::read(uint8_t ch) {
uint16_t pwm=0;
switch(ch) {
case 0: pwm=OCR5B; break; //ch1
case 1: pwm=OCR5C; break; //ch2
case 2: pwm=OCR1B; break; //ch3
case 3: pwm=OCR1C; break; //ch4
case 4: pwm=OCR4C; break; //ch5
case 5: pwm=OCR4B; break; //ch6
case 6: pwm=OCR3C; break; //ch7
case 7: pwm=OCR3B; break; //ch8
case 8: pwm=OCR5A; break; //ch9, PL3
case 9: pwm=OCR1A; break; //ch10, PB5
case 10: pwm=OCR3A; break; //ch11, PE3
}
/* scale from 0.5us resolution (timer units) to 1us units */
return pwm>>1;
}
void APM1RCOutput::read(uint16_t* period_us, uint8_t len) {
for (int i = 0; i < len; i++) {
period_us[i] = read(i);
}
}
uint16_t APM1RCOutput::_timer_period(uint16_t speed_hz) {
return 2000000UL / speed_hz;
}
#endif