Ardupilot2/ArduCopter/setup.cpp
Andrew Tridgell 278883c521 Copter: finished conversion to .cpp files
Pair-Programmed-With: Randy Mackay <rmackay9@yahoo.com>
2015-05-30 15:21:19 +09:00

517 lines
14 KiB
C++

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include "Copter.h"
#if CLI_ENABLED == ENABLED
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
#define WITH_ESC_CALIB
#endif
// Command/function table for the setup menu
static const struct Menu::command setup_menu_commands[] PROGMEM = {
{"reset", MENU_FUNC(setup_factory)},
{"show", MENU_FUNC(setup_show)},
{"set", MENU_FUNC(setup_set)},
#ifdef WITH_ESC_CALIB
{"esc_calib", MENU_FUNC(esc_calib)},
#endif
};
// Create the setup menu object.
MENU(setup_menu, "setup", setup_menu_commands);
// Called from the top-level menu to run the setup menu.
int8_t Copter::setup_mode(uint8_t argc, const Menu::arg *argv)
{
// Give the user some guidance
cliSerial->printf_P(PSTR("Setup Mode\n\n\n"));
// Run the setup menu. When the menu exits, we will return to the main menu.
setup_menu.run();
return 0;
}
// Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults).
// Called by the setup menu 'factoryreset' command.
int8_t Copter::setup_factory(uint8_t argc, const Menu::arg *argv)
{
int16_t c;
cliSerial->printf_P(PSTR("\n'Y' = factory reset, any other key to abort:\n"));
do {
c = cliSerial->read();
} while (-1 == c);
if (('y' != c) && ('Y' != c))
return(-1);
AP_Param::erase_all();
cliSerial->printf_P(PSTR("\nReboot board"));
delay(1000);
for (;; ) {
}
// note, cannot actually return here
return(0);
}
//Set a parameter to a specified value. It will cast the value to the current type of the
//parameter and make sure it fits in case of INT8 and INT16
int8_t Copter::setup_set(uint8_t argc, const Menu::arg *argv)
{
int8_t value_int8;
int16_t value_int16;
AP_Param *param;
enum ap_var_type p_type;
if(argc!=3)
{
cliSerial->printf_P(PSTR("Invalid command. Usage: set <name> <value>\n"));
return 0;
}
param = AP_Param::find(argv[1].str, &p_type);
if(!param)
{
cliSerial->printf_P(PSTR("Param not found: %s\n"), argv[1].str);
return 0;
}
switch(p_type)
{
case AP_PARAM_INT8:
value_int8 = (int8_t)(argv[2].i);
if(argv[2].i!=value_int8)
{
cliSerial->printf_P(PSTR("Value out of range for type INT8\n"));
return 0;
}
((AP_Int8*)param)->set_and_save(value_int8);
break;
case AP_PARAM_INT16:
value_int16 = (int16_t)(argv[2].i);
if(argv[2].i!=value_int16)
{
cliSerial->printf_P(PSTR("Value out of range for type INT16\n"));
return 0;
}
((AP_Int16*)param)->set_and_save(value_int16);
break;
//int32 and float don't need bounds checking, just use the value provoded by Menu::arg
case AP_PARAM_INT32:
((AP_Int32*)param)->set_and_save(argv[2].i);
break;
case AP_PARAM_FLOAT:
((AP_Float*)param)->set_and_save(argv[2].f);
break;
default:
cliSerial->printf_P(PSTR("Cannot set parameter of type %d.\n"), p_type);
break;
}
return 0;
}
// Print the current configuration.
// Called by the setup menu 'show' command.
int8_t Copter::setup_show(uint8_t argc, const Menu::arg *argv)
{
AP_Param *param;
ap_var_type type;
//If a parameter name is given as an argument to show, print only that parameter
if(argc>=2)
{
param=AP_Param::find(argv[1].str, &type);
if(!param)
{
cliSerial->printf_P(PSTR("Parameter not found: '%s'\n"), argv[1]);
return 0;
}
AP_Param::show(param, argv[1].str, type, cliSerial);
return 0;
}
// clear the area
print_blanks(8);
report_version();
report_radio();
report_frame();
report_batt_monitor();
report_flight_modes();
report_ins();
report_compass();
report_optflow();
AP_Param::show_all(cliSerial);
return(0);
}
#ifdef WITH_ESC_CALIB
#define PWM_CALIB_MIN 1000
#define PWM_CALIB_MAX 2000
#define PWM_HIGHEST_MAX 2200
#define PWM_LOWEST_MAX 1200
#define PWM_HIGHEST_MIN 1800
#define PWM_LOWEST_MIN 800
int8_t Copter::esc_calib(uint8_t argc,const Menu::arg *argv)
{
char c;
unsigned max_channels = 0;
uint32_t set_mask = 0;
uint16_t pwm_high = PWM_CALIB_MAX;
uint16_t pwm_low = PWM_CALIB_MIN;
if (argc < 2) {
cliSerial->printf_P(PSTR("Pls provide Channel Mask\n"
"\tusage: esc_calib 1010 - enables calibration for 2nd and 4th Motor\n"));
return(0);
}
set_mask = strtol (argv[1].str, NULL, 2);
if (set_mask == 0)
cliSerial->printf_P(PSTR("no channels chosen"));
//cliSerial->printf_P(PSTR("\n%d\n"),set_mask);
set_mask<<=1;
/* wait 50 ms */
hal.scheduler->delay(50);
cliSerial->printf_P(PSTR("\nATTENTION, please remove or fix propellers before starting calibration!\n"
"\n"
"Make sure\n"
"\t - that the ESCs are not powered\n"
"\t - that safety is off\n"
"\t - that the controllers are stopped\n"
"\n"
"Do you want to start calibration now: y or n?\n"));
/* wait for user input */
while (1) {
c= cliSerial->read();
if (c == 'y' || c == 'Y') {
break;
} else if (c == 0x03 || c == 0x63 || c == 'q') {
cliSerial->printf_P(PSTR("ESC calibration exited\n"));
return(0);
} else if (c == 'n' || c == 'N') {
cliSerial->printf_P(PSTR("ESC calibration aborted\n"));
return(0);
}
/* rate limit to ~ 20 Hz */
hal.scheduler->delay(50);
}
/* get number of channels available on the device */
max_channels = AP_MOTORS_MAX_NUM_MOTORS;
/* tell IO/FMU that the system is armed (it will output values if safety is off) */
motors.armed(true);
cliSerial->printf_P(PSTR("Outputs armed\n"));
/* wait for user confirmation */
cliSerial->printf_P(PSTR("\nHigh PWM set: %d\n"
"\n"
"Connect battery now and hit c+ENTER after the ESCs confirm the first calibration step\n"
"\n"), pwm_high);
while (1) {
/* set max PWM */
for (unsigned i = 0; i < max_channels; i++) {
if (set_mask & 1<<i) {
motors.output_test(i, pwm_high);
}
}
c = cliSerial->read();
if (c == 'c') {
break;
} else if (c == 0x03 || c == 0x63 || c == 'q') {
cliSerial->printf_P(PSTR("ESC calibration exited\n"));
return(0);
}
/* rate limit to ~ 20 Hz */
hal.scheduler->delay(50);
}
cliSerial->printf_P(PSTR("Low PWM set: %d\n"
"\n"
"Hit c+Enter when finished\n"
"\n"), pwm_low);
while (1) {
/* set disarmed PWM */
for (unsigned i = 0; i < max_channels; i++) {
if (set_mask & 1<<i) {
motors.output_test(i, pwm_low);
}
}
c = cliSerial->read();
if (c == 'c') {
break;
} else if (c == 0x03 || c == 0x63 || c == 'q') {
cliSerial->printf_P(PSTR("ESC calibration exited\n"));
return(0);
}
/* rate limit to ~ 20 Hz */
hal.scheduler->delay(50);
}
/* disarm */
motors.armed(false);
cliSerial->printf_P(PSTR("Outputs disarmed\n"));
cliSerial->printf_P(PSTR("ESC calibration finished\n"));
return(0);
}
#endif // WITH_ESC_CALIB
/***************************************************************************/
// CLI reports
/***************************************************************************/
void Copter::report_batt_monitor()
{
cliSerial->printf_P(PSTR("\nBatt Mon:\n"));
print_divider();
if (battery.num_instances() == 0) {
print_enabled(false);
} else if (!battery.has_current()) {
cliSerial->printf_P(PSTR("volts"));
} else {
cliSerial->printf_P(PSTR("volts and cur"));
}
print_blanks(2);
}
void Copter::report_frame()
{
cliSerial->printf_P(PSTR("Frame\n"));
print_divider();
#if FRAME_CONFIG == QUAD_FRAME
cliSerial->printf_P(PSTR("Quad frame\n"));
#elif FRAME_CONFIG == TRI_FRAME
cliSerial->printf_P(PSTR("TRI frame\n"));
#elif FRAME_CONFIG == HEXA_FRAME
cliSerial->printf_P(PSTR("Hexa frame\n"));
#elif FRAME_CONFIG == Y6_FRAME
cliSerial->printf_P(PSTR("Y6 frame\n"));
#elif FRAME_CONFIG == OCTA_FRAME
cliSerial->printf_P(PSTR("Octa frame\n"));
#elif FRAME_CONFIG == HELI_FRAME
cliSerial->printf_P(PSTR("Heli frame\n"));
#endif
print_blanks(2);
}
void Copter::report_radio()
{
cliSerial->printf_P(PSTR("Radio\n"));
print_divider();
// radio
print_radio_values();
print_blanks(2);
}
void Copter::report_ins()
{
cliSerial->printf_P(PSTR("INS\n"));
print_divider();
print_gyro_offsets();
print_accel_offsets_and_scaling();
print_blanks(2);
}
void Copter::report_flight_modes()
{
cliSerial->printf_P(PSTR("Flight modes\n"));
print_divider();
for(int16_t i = 0; i < 6; i++ ) {
print_switch(i, flight_modes[i], BIT_IS_SET(g.simple_modes, i));
}
print_blanks(2);
}
void Copter::report_optflow()
{
#if OPTFLOW == ENABLED
cliSerial->printf_P(PSTR("OptFlow\n"));
print_divider();
print_enabled(optflow.enabled());
print_blanks(2);
#endif // OPTFLOW == ENABLED
}
/***************************************************************************/
// CLI utilities
/***************************************************************************/
void Copter::print_radio_values()
{
cliSerial->printf_P(PSTR("CH1: %d | %d\n"), (int)channel_roll->radio_min, (int)channel_roll->radio_max);
cliSerial->printf_P(PSTR("CH2: %d | %d\n"), (int)channel_pitch->radio_min, (int)channel_pitch->radio_max);
cliSerial->printf_P(PSTR("CH3: %d | %d\n"), (int)channel_throttle->radio_min, (int)channel_throttle->radio_max);
cliSerial->printf_P(PSTR("CH4: %d | %d\n"), (int)channel_yaw->radio_min, (int)channel_yaw->radio_max);
cliSerial->printf_P(PSTR("CH5: %d | %d\n"), (int)g.rc_5.radio_min, (int)g.rc_5.radio_max);
cliSerial->printf_P(PSTR("CH6: %d | %d\n"), (int)g.rc_6.radio_min, (int)g.rc_6.radio_max);
cliSerial->printf_P(PSTR("CH7: %d | %d\n"), (int)g.rc_7.radio_min, (int)g.rc_7.radio_max);
cliSerial->printf_P(PSTR("CH8: %d | %d\n"), (int)g.rc_8.radio_min, (int)g.rc_8.radio_max);
}
void Copter::print_switch(uint8_t p, uint8_t m, bool b)
{
cliSerial->printf_P(PSTR("Pos %d:\t"),p);
print_flight_mode(cliSerial, m);
cliSerial->printf_P(PSTR(",\t\tSimple: "));
if(b)
cliSerial->printf_P(PSTR("ON\n"));
else
cliSerial->printf_P(PSTR("OFF\n"));
}
void Copter::print_accel_offsets_and_scaling(void)
{
const Vector3f &accel_offsets = ins.get_accel_offsets();
const Vector3f &accel_scale = ins.get_accel_scale();
cliSerial->printf_P(PSTR("A_off: %4.2f, %4.2f, %4.2f\nA_scale: %4.2f, %4.2f, %4.2f\n"),
(double)accel_offsets.x, // Pitch
(double)accel_offsets.y, // Roll
(double)accel_offsets.z, // YAW
(double)accel_scale.x, // Pitch
(double)accel_scale.y, // Roll
(double)accel_scale.z); // YAW
}
void Copter::print_gyro_offsets(void)
{
const Vector3f &gyro_offsets = ins.get_gyro_offsets();
cliSerial->printf_P(PSTR("G_off: %4.2f, %4.2f, %4.2f\n"),
(double)gyro_offsets.x,
(double)gyro_offsets.y,
(double)gyro_offsets.z);
}
#endif // CLI_ENABLED
// report_compass - displays compass information. Also called by compassmot.pde
void Copter::report_compass()
{
cliSerial->printf_P(PSTR("Compass\n"));
print_divider();
print_enabled(g.compass_enabled);
// mag declination
cliSerial->printf_P(PSTR("Mag Dec: %4.4f\n"),
(double)degrees(compass.get_declination()));
// mag offsets
Vector3f offsets;
for (uint8_t i=0; i<compass.get_count(); i++) {
offsets = compass.get_offsets(i);
// mag offsets
cliSerial->printf_P(PSTR("Mag%d off: %4.4f, %4.4f, %4.4f\n"),
(int)i,
(double)offsets.x,
(double)offsets.y,
(double)offsets.z);
}
// motor compensation
cliSerial->print_P(PSTR("Motor Comp: "));
if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_DISABLED ) {
cliSerial->print_P(PSTR("Off\n"));
}else{
if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_THROTTLE ) {
cliSerial->print_P(PSTR("Throttle"));
}
if( compass.get_motor_compensation_type() == AP_COMPASS_MOT_COMP_CURRENT ) {
cliSerial->print_P(PSTR("Current"));
}
Vector3f motor_compensation;
for (uint8_t i=0; i<compass.get_count(); i++) {
motor_compensation = compass.get_motor_compensation(i);
cliSerial->printf_P(PSTR("\nComMot%d: %4.2f, %4.2f, %4.2f\n"),
(int)i,
(double)motor_compensation.x,
(double)motor_compensation.y,
(double)motor_compensation.z);
}
}
print_blanks(1);
}
void Copter::print_blanks(int16_t num)
{
while(num > 0) {
num--;
cliSerial->println("");
}
}
void Copter::print_divider(void)
{
for (int i = 0; i < 40; i++) {
cliSerial->print_P(PSTR("-"));
}
cliSerial->println();
}
void Copter::print_enabled(bool b)
{
if(b)
cliSerial->print_P(PSTR("en"));
else
cliSerial->print_P(PSTR("dis"));
cliSerial->print_P(PSTR("abled\n"));
}
void Copter::report_version()
{
cliSerial->printf_P(PSTR("FW Ver: %d\n"),(int)g.k_format_version);
print_divider();
print_blanks(2);
}