Ardupilot2/libraries/AP_Proximity/AP_Proximity.cpp
Andrew Tridgell ae2dc5570e AP_Proximity: added SITL proximity backend
using fence points for avoidance
2016-11-14 15:53:43 +09:00

197 lines
6.3 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Proximity.h"
#include "AP_Proximity_LightWareSF40C.h"
#include "AP_Proximity_SITL.h"
extern const AP_HAL::HAL &hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Proximity::var_info[] = {
// 0 is reserved for possible addition of an ENABLED parameter
// @Param: _TYPE
// @DisplayName: Proximity type
// @Description: What type of proximity sensor is connected
// @Values: 0:None,1:LightWareSF40C
// @User: Standard
AP_GROUPINFO("_TYPE", 1, AP_Proximity, _type[0], 0),
// @Param: _ORIENT
// @DisplayName: Proximity sensor orientation
// @Description: Proximity sensor orientation
// @Values: 0:Default,1:Upside Down
// @User: Standard
AP_GROUPINFO("_ORIENT", 2, AP_Proximity, _orientation[0], 0),
// @Param: _YAW_CORR
// @DisplayName: Proximity sensor yaw correction
// @Description: Proximity sensor yaw correction
// @Range: -180 180
// @User: Standard
AP_GROUPINFO("_YAW_CORR", 3, AP_Proximity, _yaw_correction[0], PROXIMITY_YAW_CORRECTION_DEFAULT),
#if PROXIMITY_MAX_INSTANCES > 1
// @Param: 2_TYPE
// @DisplayName: Second Proximity type
// @Description: What type of proximity sensor is connected
// @Values: 0:None,1:LightWareSF40C
// @User: Advanced
AP_GROUPINFO("2_TYPE", 4, AP_Proximity, _type[1], 0),
// @Param: _ORIENT
// @DisplayName: Second Proximity sensor orientation
// @Description: Second Proximity sensor orientation
// @Values: 0:Default,1:Upside Down
// @User: Standard
AP_GROUPINFO("2_ORIENT", 5, AP_Proximity, _orientation[1], 0),
// @Param: _YAW_CORR
// @DisplayName: Second Proximity sensor yaw correction
// @Description: Second Proximity sensor yaw correction
// @Range: -180 180
// @User: Standard
AP_GROUPINFO("2_YAW_CORR", 6, AP_Proximity, _yaw_correction[1], PROXIMITY_YAW_CORRECTION_DEFAULT),
#endif
AP_GROUPEND
};
AP_Proximity::AP_Proximity(AP_SerialManager &_serial_manager) :
primary_instance(0),
num_instances(0),
serial_manager(_serial_manager)
{
AP_Param::setup_object_defaults(this, var_info);
}
// initialise the Proximity class. We do detection of attached sensors here
// we don't allow for hot-plugging of sensors (i.e. reboot required)
void AP_Proximity::init(void)
{
if (num_instances != 0) {
// init called a 2nd time?
return;
}
for (uint8_t i=0; i<PROXIMITY_MAX_INSTANCES; i++) {
detect_instance(i);
if (drivers[i] != nullptr) {
// we loaded a driver for this instance, so it must be
// present (although it may not be healthy)
num_instances = i+1;
}
// initialise status
state[i].status = Proximity_NotConnected;
}
}
// update Proximity state for all instances. This should be called at a high rate by the main loop
void AP_Proximity::update(void)
{
for (uint8_t i=0; i<num_instances; i++) {
if (drivers[i] != nullptr) {
if (_type[i] == Proximity_Type_None) {
// allow user to disable a proximity sensor at runtime
state[i].status = Proximity_NotConnected;
continue;
}
drivers[i]->update();
}
}
// work out primary instance - first sensor returning good data
for (int8_t i=num_instances-1; i>=0; i--) {
if (drivers[i] != nullptr && (state[i].status == Proximity_Good)) {
primary_instance = i;
}
}
}
// return sensor orientation
uint8_t AP_Proximity::get_orientation(uint8_t instance) const
{
if (instance >= PROXIMITY_MAX_INSTANCES) {
return 0;
}
return _orientation[instance].get();
}
// return sensor yaw correction
int16_t AP_Proximity::get_yaw_correction(uint8_t instance) const
{
if (instance >= PROXIMITY_MAX_INSTANCES) {
return 0;
}
return _yaw_correction[instance].get();
}
// return sensor health
AP_Proximity::Proximity_Status AP_Proximity::get_status(uint8_t instance) const
{
// sanity check instance number
if (instance >= num_instances) {
return Proximity_NotConnected;
}
return state[instance].status;
}
AP_Proximity::Proximity_Status AP_Proximity::get_status() const
{
return get_status(primary_instance);
}
// detect if an instance of a proximity sensor is connected.
void AP_Proximity::detect_instance(uint8_t instance)
{
uint8_t type = _type[instance];
if (type == Proximity_Type_SF40C) {
if (AP_Proximity_LightWareSF40C::detect(serial_manager)) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_LightWareSF40C(*this, state[instance], serial_manager);
return;
}
}
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (type == Proximity_Type_SITL) {
state[instance].instance = instance;
drivers[instance] = new AP_Proximity_SITL(*this, state[instance]);
return;
}
#endif
}
// get distance in meters in a particular direction in degrees (0 is forward, clockwise)
// returns true on successful read and places distance in distance
bool AP_Proximity::get_horizontal_distance(uint8_t instance, float angle_deg, float &distance) const
{
if ((drivers[instance] == nullptr) || (_type[instance] == Proximity_Type_None)) {
return false;
}
// get distance from backend
return drivers[instance]->get_horizontal_distance(angle_deg, distance);
}
// get distance in meters in a particular direction in degrees (0 is forward, clockwise)
// returns true on successful read and places distance in distance
bool AP_Proximity::get_horizontal_distance(float angle_deg, float &distance) const
{
return get_horizontal_distance(primary_instance, angle_deg, distance);
}