370 lines
15 KiB
C++
370 lines
15 KiB
C++
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* AP_MotorsSingle.cpp - ArduCopter motors library
|
|
* Code by RandyMackay. DIYDrones.com
|
|
*
|
|
*/
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include <AP_Math/AP_Math.h>
|
|
#include "AP_MotorsCoax.h"
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
const AP_Param::GroupInfo AP_MotorsCoax::var_info[] = {
|
|
// variables from parent vehicle
|
|
AP_NESTEDGROUPINFO(AP_MotorsMulticopter, 0),
|
|
|
|
// parameters 1 ~ 29 were reserved for tradheli
|
|
// parameters 30 ~ 39 reserved for tricopter
|
|
// parameters 40 ~ 49 for single copter and coax copter (these have identical parameter files)
|
|
|
|
// @Param: ROLL_SV_REV
|
|
// @DisplayName: Reverse roll feedback
|
|
// @Description: Ensure the feedback is negative
|
|
// @Values: -1:Reversed,1:Normal
|
|
AP_GROUPINFO("ROLL_SV_REV", 40, AP_MotorsCoax, _roll_reverse, AP_MOTORS_COAX_POSITIVE),
|
|
|
|
// @Param: PITCH_SV_REV
|
|
// @DisplayName: Reverse roll feedback
|
|
// @Description: Ensure the feedback is negative
|
|
// @Values: -1:Reversed,1:Normal
|
|
AP_GROUPINFO("PITCH_SV_REV", 41, AP_MotorsCoax, _pitch_reverse, AP_MOTORS_COAX_POSITIVE),
|
|
|
|
// @Param: YAW_SV_REV
|
|
// @DisplayName: Reverse roll feedback
|
|
// @Description: Ensure the feedback is negative
|
|
// @Values: -1:Reversed,1:Normal
|
|
AP_GROUPINFO("YAW_SV_REV", 42, AP_MotorsCoax, _yaw_reverse, AP_MOTORS_COAX_POSITIVE),
|
|
|
|
// @Param: SV_SPEED
|
|
// @DisplayName: Servo speed
|
|
// @Description: Servo update speed
|
|
// @Units: Hz
|
|
AP_GROUPINFO("SV_SPEED", 43, AP_MotorsCoax, _servo_speed, AP_MOTORS_SINGLE_SPEED_DIGITAL_SERVOS),
|
|
|
|
// @Group: SV1_
|
|
// @Path: ../RC_Channel/RC_Channel.cpp
|
|
AP_SUBGROUPINFO(_servo1, "SV1_", 44, AP_MotorsCoax, RC_Channel),
|
|
// @Group: SV2_
|
|
// @Path: ../RC_Channel/RC_Channel.cpp
|
|
AP_SUBGROUPINFO(_servo2, "SV2_", 45, AP_MotorsCoax, RC_Channel),
|
|
// @Group: SV3_
|
|
// @Path: ../RC_Channel/RC_Channel.cpp
|
|
AP_SUBGROUPINFO(_servo3, "SV3_", 46, AP_MotorsCoax, RC_Channel),
|
|
// @Group: SV4_
|
|
// @Path: ../RC_Channel/RC_Channel.cpp
|
|
AP_SUBGROUPINFO(_servo4, "SV4_", 47, AP_MotorsCoax, RC_Channel),
|
|
|
|
AP_GROUPEND
|
|
};
|
|
// init
|
|
void AP_MotorsCoax::Init()
|
|
{
|
|
// set update rate for the 3 motors (but not the servo on channel 7)
|
|
set_update_rate(_speed_hz);
|
|
|
|
// set the motor_enabled flag so that the main ESC can be calibrated like other frame types
|
|
motor_enabled[AP_MOTORS_MOT_5] = true;
|
|
motor_enabled[AP_MOTORS_MOT_6] = true;
|
|
|
|
// we set four servos to angle
|
|
_servo1.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo2.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo3.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo4.set_type(RC_CHANNEL_TYPE_ANGLE);
|
|
_servo1.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
_servo2.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
_servo3.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
_servo4.set_angle(AP_MOTORS_COAX_SERVO_INPUT_RANGE);
|
|
|
|
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc)
|
|
RC_Channel_aux::disable_aux_channel(CH_7);
|
|
}
|
|
|
|
// set update rate to motors - a value in hertz
|
|
void AP_MotorsCoax::set_update_rate( uint16_t speed_hz )
|
|
{
|
|
// record requested speed
|
|
_speed_hz = speed_hz;
|
|
|
|
// set update rate for the 4 servos and 2 motors
|
|
uint32_t mask =
|
|
1U << AP_MOTORS_MOT_1 |
|
|
1U << AP_MOTORS_MOT_2 |
|
|
1U << AP_MOTORS_MOT_3 |
|
|
1U << AP_MOTORS_MOT_4 ;
|
|
rc_set_freq(mask, _servo_speed);
|
|
uint32_t mask2 =
|
|
1U << AP_MOTORS_MOT_5 |
|
|
1U << AP_MOTORS_MOT_6 ;
|
|
rc_set_freq(mask2, _speed_hz);
|
|
}
|
|
|
|
// enable - starts allowing signals to be sent to motors
|
|
void AP_MotorsCoax::enable()
|
|
{
|
|
// enable output channels
|
|
rc_enable_ch(AP_MOTORS_MOT_1);
|
|
rc_enable_ch(AP_MOTORS_MOT_2);
|
|
rc_enable_ch(AP_MOTORS_MOT_3);
|
|
rc_enable_ch(AP_MOTORS_MOT_4);
|
|
rc_enable_ch(AP_MOTORS_MOT_5);
|
|
rc_enable_ch(AP_MOTORS_MOT_6);
|
|
}
|
|
|
|
// output_min - sends minimum values out to the motor and trim values to the servos
|
|
void AP_MotorsCoax::output_min()
|
|
{
|
|
// send minimum value to each motor
|
|
hal.rcout->cork();
|
|
rc_write(AP_MOTORS_MOT_1, _servo1.radio_trim);
|
|
rc_write(AP_MOTORS_MOT_2, _servo2.radio_trim);
|
|
rc_write(AP_MOTORS_MOT_3, _servo3.radio_trim);
|
|
rc_write(AP_MOTORS_MOT_4, _servo4.radio_trim);
|
|
rc_write(AP_MOTORS_MOT_5, _throttle_radio_min);
|
|
rc_write(AP_MOTORS_MOT_6, _throttle_radio_min);
|
|
hal.rcout->push();
|
|
}
|
|
|
|
void AP_MotorsCoax::output_to_motors()
|
|
{
|
|
switch (_multicopter_flags.spool_mode) {
|
|
case SHUT_DOWN:
|
|
// sends minimum values out to the motors
|
|
hal.rcout->cork();
|
|
rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_roll_radio_passthrough, _servo1));
|
|
rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_pitch_radio_passthrough, _servo2));
|
|
rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_roll_radio_passthrough, _servo3));
|
|
rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_pitch_radio_passthrough, _servo4));
|
|
rc_write(AP_MOTORS_MOT_5, _throttle_radio_min);
|
|
rc_write(AP_MOTORS_MOT_6, _throttle_radio_min);
|
|
hal.rcout->push();
|
|
break;
|
|
case SPIN_WHEN_ARMED:
|
|
// sends output to motors when armed but not flying
|
|
hal.rcout->cork();
|
|
rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[0], _servo1));
|
|
rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[1], _servo2));
|
|
rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[2], _servo3));
|
|
rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_throttle_low_end_pct * _actuator_out[3], _servo4));
|
|
rc_write(AP_MOTORS_MOT_5, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle));
|
|
rc_write(AP_MOTORS_MOT_6, constrain_int16(_throttle_radio_min + _throttle_low_end_pct * _min_throttle, _throttle_radio_min, _throttle_radio_min + _min_throttle));
|
|
hal.rcout->push();
|
|
break;
|
|
case SPOOL_UP:
|
|
case THROTTLE_UNLIMITED:
|
|
case SPOOL_DOWN:
|
|
// set motor output based on thrust requests
|
|
hal.rcout->cork();
|
|
rc_write(AP_MOTORS_MOT_1, calc_pivot_radio_output(_actuator_out[0], _servo1));
|
|
rc_write(AP_MOTORS_MOT_2, calc_pivot_radio_output(_actuator_out[1], _servo2));
|
|
rc_write(AP_MOTORS_MOT_3, calc_pivot_radio_output(_actuator_out[2], _servo3));
|
|
rc_write(AP_MOTORS_MOT_4, calc_pivot_radio_output(_actuator_out[3], _servo4));
|
|
rc_write(AP_MOTORS_MOT_5, calc_thrust_to_pwm(_thrust_yt_ccw));
|
|
rc_write(AP_MOTORS_MOT_6, calc_thrust_to_pwm(_thrust_yt_cw));
|
|
hal.rcout->push();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
|
|
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
|
|
uint16_t AP_MotorsCoax::get_motor_mask()
|
|
{
|
|
uint32_t mask =
|
|
1U << AP_MOTORS_MOT_1 |
|
|
1U << AP_MOTORS_MOT_2 |
|
|
1U << AP_MOTORS_MOT_3 |
|
|
1U << AP_MOTORS_MOT_4 |
|
|
1U << AP_MOTORS_MOT_5 |
|
|
1U << AP_MOTORS_MOT_6;
|
|
return rc_map_mask(mask);
|
|
}
|
|
|
|
// sends commands to the motors
|
|
void AP_MotorsCoax::output_armed_stabilizing()
|
|
{
|
|
float roll_thrust; // roll thrust input value, +/- 1.0
|
|
float pitch_thrust; // pitch thrust input value, +/- 1.0
|
|
float yaw_thrust; // yaw thrust input value, +/- 1.0
|
|
float throttle_thrust; // throttle thrust input value, 0.0 - 1.0
|
|
float thrust_min_rp; // the minimum throttle setting that will not limit the roll and pitch output
|
|
float thr_adj; // the difference between the pilot's desired throttle and throttle_thrust_best_rpy
|
|
float throttle_thrust_hover = get_hover_throttle_as_high_end_pct(); // throttle hover thrust value, 0.0 - 1.0
|
|
float throttle_thrust_best_rpy; // throttle providing maximum roll, pitch and yaw range without climbing
|
|
float throttle_thrust_rpy_mix; // partial calculation of throttle_thrust_best_rpy
|
|
float y_scale; // this is used to scale the yaw to fit within the motor limits
|
|
|
|
// apply voltage and air pressure compensation
|
|
// todo: we shouldn't need input reversing with servo reversing
|
|
roll_thrust = _roll_reverse * get_roll_thrust() * get_compensation_gain();
|
|
pitch_thrust = _pitch_reverse * get_pitch_thrust() * get_compensation_gain();
|
|
yaw_thrust = _yaw_reverse * get_yaw_thrust() * get_compensation_gain();
|
|
throttle_thrust = get_throttle() * get_compensation_gain();
|
|
|
|
// assuming maximum actuator defection the maximum roll and pitch torque is approximately proportional to thrust
|
|
thrust_min_rp = MAX(fabsf(roll_thrust), fabsf(pitch_thrust));
|
|
|
|
// sanity check throttle is above zero and below current limited throttle
|
|
if (throttle_thrust <= 0.0f) {
|
|
throttle_thrust = 0.0f;
|
|
limit.throttle_lower = true;
|
|
}
|
|
if (throttle_thrust >= _throttle_thrust_max) {
|
|
throttle_thrust = _throttle_thrust_max;
|
|
limit.throttle_upper = true;
|
|
}
|
|
throttle_thrust_rpy_mix = MAX(throttle_thrust, throttle_thrust*MAX(0.0f,1.0f-_throttle_rpy_mix)+throttle_thrust_hover*_throttle_rpy_mix);
|
|
|
|
// check everything fits
|
|
throttle_thrust_best_rpy = MIN(0.5f, throttle_thrust_rpy_mix);
|
|
if (is_zero(yaw_thrust)) {
|
|
y_scale = 1.0f;
|
|
} else {
|
|
y_scale = constrain_float(throttle_thrust_best_rpy/fabsf(0.5f * yaw_thrust), 0.0f, 1.0f);
|
|
}
|
|
|
|
thr_adj = throttle_thrust - throttle_thrust_best_rpy;
|
|
if(y_scale < 1.0f){
|
|
// Full range is being used yaw.
|
|
limit.yaw = true;
|
|
if(thr_adj < 0.0f){
|
|
limit.throttle_lower = true;
|
|
}else if(thr_adj > 0.0f){
|
|
limit.throttle_upper = true;
|
|
}
|
|
thr_adj = 0.0f;
|
|
}else{
|
|
if(thr_adj < MIN(-(throttle_thrust_best_rpy - fabsf(0.5f * yaw_thrust)), -(throttle_thrust_best_rpy - thrust_min_rp))){
|
|
// Throttle can't be reduced to the desired level for one of two reasons:
|
|
// 1. This would result in yaw control deviation causing the throttle output to be out of range.
|
|
// 2. This would roll or pitch control would not be able to reach the desired level because of lack of thrust.
|
|
thr_adj = MIN(-(throttle_thrust_best_rpy - fabsf(0.5f * yaw_thrust)), -(throttle_thrust_best_rpy - thrust_min_rp));
|
|
limit.throttle_lower = true;
|
|
if(thrust_min_rp > throttle_thrust_best_rpy + thr_adj){
|
|
// todo: add limits for roll and pitch separately
|
|
limit.roll_pitch = true;
|
|
}
|
|
}else if(thr_adj > 1.0f - (throttle_thrust_best_rpy + fabsf(0.5f * yaw_thrust))){
|
|
// Throttle can't be increased to desired value
|
|
thr_adj = 1.0f - (throttle_thrust_best_rpy + fabsf(0.5f * yaw_thrust));
|
|
limit.throttle_upper = true;
|
|
}
|
|
}
|
|
|
|
_thrust_yt_ccw = throttle_thrust_best_rpy + thr_adj + 0.5f * y_scale *_thrust_yt_ccw;
|
|
_thrust_yt_cw = throttle_thrust_best_rpy + thr_adj - 0.5f * y_scale *_thrust_yt_cw;
|
|
|
|
if(is_zero((throttle_thrust_best_rpy + thr_adj))){
|
|
limit.roll_pitch = true;
|
|
if(roll_thrust < 0.0f){
|
|
_actuator_out[0] = -1.0f;
|
|
}else if(roll_thrust > 0.0f){
|
|
_actuator_out[0] = 1.0f;
|
|
}else{
|
|
_actuator_out[0] = 0.0f;
|
|
}
|
|
if(roll_thrust < 0.0f){
|
|
_actuator_out[1] = -1.0f;
|
|
}else if(roll_thrust > 0.0f){
|
|
_actuator_out[1] = 1.0f;
|
|
}else{
|
|
_actuator_out[1] = 0.0f;
|
|
}
|
|
}else{
|
|
// force of a lifting surface is approximately equal to the angle of attack times the airflow velocity squared
|
|
// static thrust is proportional to the airflow velocity squared
|
|
// therefore the torque of the roll and pitch actuators should be approximately proportional to
|
|
// the angle of attack multiplied by the static thrust.
|
|
_actuator_out[0] = roll_thrust/(throttle_thrust_best_rpy + thr_adj);
|
|
_actuator_out[1] = pitch_thrust/(throttle_thrust_best_rpy + thr_adj);
|
|
if(fabsf(_actuator_out[0]) > 1.0f){
|
|
limit.roll_pitch = true;
|
|
_actuator_out[0] = constrain_float(_actuator_out[0], -1.0f, 1.0f);
|
|
}
|
|
if(fabsf(_actuator_out[1]) > 1.0f){
|
|
limit.roll_pitch = true;
|
|
_actuator_out[1] = constrain_float(_actuator_out[1], -1.0f, 1.0f);
|
|
}
|
|
}
|
|
_actuator_out[2] = _actuator_out[0];
|
|
_actuator_out[3] = _actuator_out[1];
|
|
}
|
|
|
|
// output_test - spin a motor at the pwm value specified
|
|
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
|
|
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
|
|
void AP_MotorsCoax::output_test(uint8_t motor_seq, int16_t pwm)
|
|
{
|
|
// exit immediately if not armed
|
|
if (!armed()) {
|
|
return;
|
|
}
|
|
|
|
// output to motors and servos
|
|
switch (motor_seq) {
|
|
case 1:
|
|
// flap servo 1
|
|
rc_write(AP_MOTORS_MOT_1, pwm);
|
|
break;
|
|
case 2:
|
|
// flap servo 2
|
|
rc_write(AP_MOTORS_MOT_2, pwm);
|
|
break;
|
|
case 3:
|
|
// flap servo 3
|
|
rc_write(AP_MOTORS_MOT_3, pwm);
|
|
break;
|
|
case 4:
|
|
// flap servo 4
|
|
rc_write(AP_MOTORS_MOT_4, pwm);
|
|
break;
|
|
case 5:
|
|
// motor 1
|
|
rc_write(AP_MOTORS_MOT_5, pwm);
|
|
break;
|
|
case 6:
|
|
// motor 2
|
|
rc_write(AP_MOTORS_MOT_6, pwm);
|
|
break;
|
|
default:
|
|
// do nothing
|
|
break;
|
|
}
|
|
}
|
|
|
|
// calc_yaw_radio_output - calculate final radio output for yaw channel
|
|
int16_t AP_MotorsCoax::calc_pivot_radio_output(float yaw_input, const RC_Channel& servo)
|
|
{
|
|
int16_t ret;
|
|
|
|
if (servo.get_reverse()) {
|
|
yaw_input = -yaw_input;
|
|
}
|
|
|
|
if (yaw_input >= 0.0f){
|
|
ret = ((yaw_input * (servo.radio_max - servo.radio_trim)) + servo.radio_trim);
|
|
} else {
|
|
ret = ((yaw_input * (servo.radio_trim - servo.radio_min)) + servo.radio_trim);
|
|
}
|
|
|
|
return ret;
|
|
}
|