Ardupilot2/Tools/ArdupilotMegaPlanner/HIL/QuadCopter.cs
Michael Oborne 712c675807 APM Planner 1.1.26
add italian - thanks emiliano
fix potential joystick throttle issue
2012-01-21 08:46:20 +08:00

422 lines
15 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using YLScsDrawing.Drawing3d;
using ArdupilotMega.HIL;
namespace ArdupilotMega.HIL
{
public class Motor : Utils
{
const bool True = true;
const bool False = false;
public Motor self;
public double angle;
public bool clockwise;
public double servo;
public Motor(double angle, bool clockwise, double servo)
{
self = this;
self.angle = angle;
self.clockwise = clockwise;
self.servo = servo;
}
public static Motor[] build_motors(string frame)
{
Motor[] motors = new HIL.Motor[8];
frame = frame.ToLower();
if (frame.Contains("quad") || frame.Contains("quadx"))
{
motors = new HIL.Motor[] {
new Motor(90, False, 1),
new Motor(270, False, 2),
new Motor(0, True, 3),
new Motor(180, True, 4),
};
if (frame.Contains("quadx"))
{
foreach (int i in range(4))
motors[i].angle -= 45.0;
}
}
else if (frame.Contains("y6"))
{
motors = new HIL.Motor[] {
new Motor(60, False, 1),
new Motor(60, True, 7),
new Motor(180, True, 4),
new Motor(180, False, 8),
new Motor(-60, True, 2),
new Motor(-60, False, 3),
};
}
else if (frame.Contains("hexa") || frame.Contains("hexax"))
{
motors = new HIL.Motor[] {
new Motor(0, True, 1),
new Motor(60, False, 4),
new Motor(120, True, 8),
new Motor(180, False, 2),
new Motor(240, True, 3),
new Motor(300, False, 7),
};
}
else if (frame.Contains("hexax"))
{
motors = new HIL.Motor[] {
new Motor(30, False, 7),
new Motor(90, True, 1),
new Motor(150, False, 4),
new Motor(210, True, 8),
new Motor(270, False, 2),
new Motor(330, True, 3),
};
}
else if (frame.Contains("octa") || frame.Contains("octax"))
{
motors = new HIL.Motor[] {
new Motor(0, True, 1),
new Motor(180, True, 2),
new Motor(45, False, 3),
new Motor(135, False, 4),
new Motor(-45, False, 7),
new Motor(-135, False, 8),
new Motor(270, True, 10),
new Motor(90, True, 11),
};
if (frame.Contains("octax"))
{
foreach (int i in range(8))
motors[i].angle += 22.5;
}
}
return motors;
}
}
public class QuadCopter : Aircraft
{
QuadCopter self;
int framecount = 0;
DateTime seconds = DateTime.Now;
double[] motor_speed = null;
double hover_throttle;
double terminal_velocity;
double terminal_rotation_rate;
Motor[] motors;
Vector3d old_position;
//# scaling from total motor power to Newtons. Allows the copter
//# to hover against gravity when each motor is at hover_throttle
double thrust_scale;
DateTime last_time;
public QuadCopter(string frame = "quad")
{
self = this;
motors = Motor.build_motors(frame);
mass = 1.0;// # Kg
frame_height = 0.1;
motor_speed = new double[motors.Length];
hover_throttle = 0.37;
terminal_velocity = 30.0;
terminal_rotation_rate = 4 * 360.0;
thrust_scale = (mass * gravity) / (motors.Length * hover_throttle);
last_time = DateTime.Now;
}
double scale_rc(int sn, float servo, float min, float max)
{
float min_pwm = 1000;
float max_pwm = 2000;
//'''scale a PWM value''' # default to servo range of 1000 to 2000
if (MainV2.comPort.param.Count > 0)
{
min_pwm = int.Parse(MainV2.comPort.param["RC3_MIN"].ToString());
max_pwm = int.Parse(MainV2.comPort.param["RC3_MAX"].ToString());
}
float p = (servo - min_pwm) / (max_pwm - min_pwm);
float v = min + p * (max - min);
if (v < min)
v = min;
if (v > max)
v = max;
return v;
}
public void update(ref double[] servos, ArdupilotMega.GCSViews.Simulation.FGNetFDM fdm)
{
for (int i = 0; i < servos.Length; i++)
{
if (servos[i] <= 0.0)
{
motor_speed[i] = 0;
}
else
{
motor_speed[i] = scale_rc(i, (float)servos[i], 0.0f, 1.0f);
//servos[i] = motor_speed[i];
}
}
double[] m = motor_speed;
/*
roll = 0;
pitch = 0;
yaw = 0;
roll_rate = 0;
pitch_rate = 0;
yaw_rate = 0;
*/
// Console.WriteLine("\nin m {0:0.000000} {1:0.000000} {2:0.000000} {3:0.000000}", m[0], m[1], m[2], m[3]);
// Console.WriteLine("in vel {0:0.000000} {1:0.000000} {2:0.000000}", velocity.X, velocity.Y, velocity.Z);
//Console.WriteLine("in r {0:0.000000} p {1:0.000000} y {2:0.000000} - r {3:0.000000} p {4:0.000000} y {5:0.000000}", roll, pitch, yaw, roll_rate, pitch_rate, yaw_rate);
// m[0] *= 0.5;
//# how much time has passed?
DateTime t = DateTime.Now;
TimeSpan delta_time = t - last_time; // 0.02
last_time = t;
if (delta_time.TotalMilliseconds > 100) // somethings wrong / debug
{
delta_time = new TimeSpan(0, 0, 0, 0, 20);
}
// rotational acceleration, in degrees/s/s, in body frame
double roll_accel = 0.0;
double pitch_accel = 0.0;
double yaw_accel = 0.0;
double thrust = 0.0;
foreach (var i in range((self.motors.Length)))
{
roll_accel += -5000.0 * sin(radians(self.motors[i].angle)) * m[i];
pitch_accel += 5000.0 * cos(radians(self.motors[i].angle)) * m[i];
if (self.motors[i].clockwise)
{
yaw_accel -= m[i] * 400.0;
}
else
{
yaw_accel += m[i] * 400.0;
}
thrust += m[i] * self.thrust_scale; // newtons
}
// rotational resistance
roll_accel -= (self.pDeg / self.terminal_rotation_rate) * 5000.0;
pitch_accel -= (self.qDeg / self.terminal_rotation_rate) * 5000.0;
yaw_accel -= (self.rDeg / self.terminal_rotation_rate) * 400.0;
//Console.WriteLine("roll {0} {1} {2}", roll_accel, roll_rate, roll);
//# update rotational rates in body frame
self.pDeg += roll_accel * delta_time.TotalSeconds;
self.qDeg += pitch_accel * delta_time.TotalSeconds;
self.rDeg += yaw_accel * delta_time.TotalSeconds;
// Console.WriteLine("roll {0} {1} {2}", roll_accel, roll_rate, roll);
// calculate rates in earth frame
var answer = BodyRatesToEarthRates(self.roll, self.pitch, self.yaw,
self.pDeg, self.qDeg, self.rDeg);
self.roll_rate = answer.Item1;
self.pitch_rate = answer.Item2;
self.yaw_rate = answer.Item3;
//self.roll_rate = pDeg;
//self.pitch_rate = qDeg;
//self.yaw_rate = rDeg;
//# update rotation
roll += roll_rate * delta_time.TotalSeconds;
pitch += pitch_rate * delta_time.TotalSeconds;
yaw += yaw_rate * delta_time.TotalSeconds;
// Console.WriteLine("roll {0} {1} {2}", roll_accel, roll_rate, roll);
//Console.WriteLine("r {0:0.0} p {1:0.0} y {2:0.0} - r {3:0.0} p {4:0.0} y {5:0.0} ms {6:0.000}", roll, pitch, yaw, roll_rate, pitch_rate, yaw_rate, delta_time.TotalSeconds);
//# air resistance
Vector3d air_resistance = -velocity * (gravity / terminal_velocity);
//# normalise rotations
normalise();
double accel = thrust / mass;
//Console.WriteLine("in {0:0.000000} {1:0.000000} {2:0.000000} {3:0.000000}", roll, pitch, yaw, accel);
Vector3d accel3D = RPY_to_XYZ(roll, pitch, yaw, accel);
//Console.WriteLine("accel3D " + accel3D.X + " " + accel3D.Y + " " + accel3D.Z);
accel3D += new Vector3d(0, 0, -gravity);
accel3D += air_resistance;
Random rand = new Random();
//velocity.X += .02 + rand.NextDouble() * .03;
//velocity.Y += .02 + rand.NextDouble() * .03;
//# new velocity vector
velocity += accel3D * delta_time.TotalSeconds;
this.accel = accel3D;
//# new position vector
old_position = new Vector3d(position);
position += velocity * delta_time.TotalSeconds;
// Console.WriteLine(fdm.agl + " "+ fdm.altitude);
//Console.WriteLine("Z {0} halt {1} < gl {2} fh {3}" ,position.Z , home_altitude , ground_level , frame_height);
if (home_latitude == 0 || home_latitude > 90 || home_latitude < -90 || home_longitude == 0)
{
this.home_latitude = fdm.latitude * rad2deg;
this.home_longitude = fdm.longitude * rad2deg;
this.home_altitude = fdm.altitude * ft2m;
this.ground_level = this.home_altitude;
this.altitude = fdm.altitude * ft2m;
this.latitude = fdm.latitude * rad2deg;
this.longitude = fdm.longitude * rad2deg;
}
//# constrain height to the ground
if (position.Z + home_altitude < ground_level + frame_height)
{
if (old_position.Z + home_altitude > ground_level + frame_height)
{
// Console.WriteLine("Hit ground at {0} m/s", (-velocity.Z));
}
velocity = new Vector3d(0, 0, 0);
roll_rate = 0;
pitch_rate = 0;
yaw_rate = 0;
roll = 0;
pitch = 0;
position = new Vector3d(position.X, position.Y,
ground_level + frame_height - home_altitude + 0);
// Console.WriteLine("here " + position.Z);
}
//# update lat/lon/altitude
update_position();
// send to apm
#if MAVLINK10
ArdupilotMega.MAVLink.__mavlink_gps_raw_int_t gps = new ArdupilotMega.MAVLink.__mavlink_gps_raw_int_t();
#else
ArdupilotMega.MAVLink.__mavlink_gps_raw_t gps = new ArdupilotMega.MAVLink.__mavlink_gps_raw_t();
#endif
ArdupilotMega.MAVLink.__mavlink_attitude_t att = new ArdupilotMega.MAVLink.__mavlink_attitude_t();
ArdupilotMega.MAVLink.__mavlink_vfr_hud_t asp = new ArdupilotMega.MAVLink.__mavlink_vfr_hud_t();
att.roll = (float)roll * deg2rad;
att.pitch = (float)pitch * deg2rad;
att.yaw = (float)yaw * deg2rad;
att.rollspeed = (float)roll_rate *deg2rad;
att.pitchspeed = (float)pitch_rate *deg2rad;
att.yawspeed = (float)yaw_rate *deg2rad;
#if MAVLINK10
gps.alt = ((int)(altitude * 1000));
gps.fix_type = 3;
gps.vel = (ushort)(Math.Sqrt((velocity.X * velocity.X) + (velocity.Y * velocity.Y)) * 100);
gps.cog = (ushort)((((Math.Atan2(velocity.Y, velocity.X) * rad2deg) + 360) % 360) * 100);
gps.lat = (int)(latitude* 1.0e7);
gps.lon = (int)(longitude * 1.0e7);
gps.time_usec = ((ulong)DateTime.Now.Ticks);
asp.airspeed = gps.vel;
#else
gps.alt = ((float)(altitude));
gps.fix_type = 3;
gps.lat = ((float)latitude);
gps.lon = ((float)longitude);
gps.usec = ((ulong)DateTime.Now.Ticks);
//Random rand = new Random();
//gps.alt += (rand.Next(100) - 50) / 100.0f;
//gps.lat += (float)((rand.NextDouble() - 0.5) * 0.00005);
//gps.lon += (float)((rand.NextDouble() - 0.5) * 0.00005);
//gps.v += (float)(rand.NextDouble() - 0.5) * 1.0f;
gps.v = ((float)Math.Sqrt((velocity.X * velocity.X) + (velocity.Y * velocity.Y)));
gps.hdg = (float)(((Math.Atan2(velocity.Y, velocity.X) * rad2deg) + 360) % 360); ;
asp.airspeed = gps.v;
#endif
MainV2.comPort.sendPacket(att);
MAVLink.__mavlink_raw_pressure_t pres = new MAVLink.__mavlink_raw_pressure_t();
double calc = (101325 * Math.Pow(1 - 2.25577 * Math.Pow(10, -5) * gps.alt, 5.25588));
pres.press_diff1 = (short)(int)(calc); // 0 alt is 0 pa
MainV2.comPort.sendPacket(pres);
MainV2.comPort.sendPacket(asp);
if (framecount % 120 == 0)
{// 50 / 10 = 5 hz
MainV2.comPort.sendPacket(gps);
//Console.WriteLine(DateTime.Now.Millisecond + " GPS" );
}
framecount++;
}
public static Vector3d RPY_to_XYZ(double roll, double pitch, double yaw, double length)
{
Vector3d v = new Vector3d(0, 0, length);
v = new_rotate_euler(-deg2rad * (pitch), 0, -deg2rad * (roll)) * v;
v = new_rotate_euler(0, deg2rad * (yaw), 0) * v;
return v;
}
static Quaternion new_rotate_euler(double heading, double attitude, double bank)
{
Quaternion Q = new Quaternion();
double c1 = Math.Cos(heading / 2);
double s1 = Math.Sin(heading / 2);
double c2 = Math.Cos(attitude / 2);
double s2 = Math.Sin(attitude / 2);
double c3 = Math.Cos(bank / 2);
double s3 = Math.Sin(bank / 2);
Q.W = c1 * c2 * c3 - s1 * s2 * s3;
Q.X = s1 * s2 * c3 + c1 * c2 * s3;
Q.Y = s1 * c2 * c3 + c1 * s2 * s3;
Q.Z = c1 * s2 * c3 - s1 * c2 * s3;
return Q;
}
}
}