Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_BMI160.cpp
2016-11-09 17:08:10 +11:00

502 lines
14 KiB
C++

/*
* Copyright (C) 2016 Intel Corporation. All rights reserved.
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <utility>
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_LINUX
#include <AP_HAL/utility/sparse-endian.h>
#include <AP_HAL_Linux/GPIO.h>
#include <AP_Math/AP_Math.h>
#include "AP_InertialSensor_BMI160.h"
/* Registers and bits definitions. The indented ones are the bits for the upper
* register. */
#define BMI160_REG_CHIPID 0x00
#define BMI160_CHIPID 0xD1
#define BMI160_REG_ERR_REG 0x02
#define BMI160_REG_FIFO_LENGTH 0x22
#define BMI160_REG_FIFO_DATA 0x24
#define BMI160_REG_ACC_CONF 0x40
#define BMI160_REG_ACC_RANGE 0x41
/* For convenience, use log2(range) - 1 instead of bits defined in
* the datasheet. See _configure_accel(). */
#define BMI160_ACC_RANGE_16G 3
#define BMI160_REG_GYR_CONF 0x42
#define BMI160_REG_GYR_RANGE 0x43
#define BMI160_GYR_RANGE_2000DPS 0x00
#define BMI160_REG_FIFO_CONFIG_0 0x46
#define BMI160_REG_FIFO_CONFIG_1 0x47
#define BMI160_FIFO_ACC_EN 0x40
#define BMI160_FIFO_GYR_EN 0x80
#define BMI160_REG_INT_EN_1 0x51
#define BMI160_INT_FWM_EN 0x40
#define BMI160_REG_INT_OUT_CTRL 0x53
#define BMI160_INT1_LVL 0x02
#define BMI160_INT1_OUTPUT_EN 0x08
#define BMI160_REG_INT_MAP_1 0x56
#define BMI160_INT_MAP_INT1_FWM 0x40
#define BMI160_REG_CMD 0x7E
#define BMI160_CMD_ACCEL_NORMAL_POWER_MODE 0x11
#define BMI160_CMD_GYRO_NORMAL_POWER_MODE 0x15
#define BMI160_CMD_FIFO_FLUSH 0xB0
#define BMI160_CMD_SOFTRESET 0xB6
#define BMI160_OSR_NORMAL 0x20
#define BMI160_ODR_1600HZ 0x0C
/* Datasheet says that the device powers up in less than 10ms, so waiting for
* 10 ms before initialization is enough. */
#define BMI160_POWERUP_DELAY_MSEC 10
/* TODO: Investigate this. The delay below is way too high and with that
* there's still at least 1% of failures on initialization. Lower values
* increase that percentage. */
#define BMI160_SOFTRESET_DELAY_MSEC 100
/* Define a little bit more than the maximum value in the datasheet's timing
* table. The datasheet recommends adding 300 us to the time for startup
* occasions. */
#define BMI160_ACCEL_NORMAL_POWER_MODE_DELAY_MSEC 4
#define BMI160_GYRO_NORMAL_POWER_MODE_DELAY_MSEC 81
#define BMI160_OSR BMI160_OSR_NORMAL
#define BMI160_ODR BMI160_ODR_1600HZ
#define BMI160_ACC_RANGE BMI160_ACC_RANGE_16G
#define BMI160_GYR_RANGE BMI160_GYR_RANGE_2000DPS
/* By looking at the datasheet, the accel range i (as defined by the macros
* BMI160_ACC_RANGE_*G) maps to the range bits by the function f defined:
* f(0) = 3; f(i) = f(i - 1) + i + 1
* Which can be written as the closed formula:
* f(i) = (i * (i + 3)) / 2 + 3 */
#define BMI160_ACC_RANGE_BITS \
(BMI160_ACC_RANGE * (BMI160_ACC_RANGE + 3) / 2 + 3)
/* The rate in Hz based on the ODR bits can be calculated with
* 100 / (2 ^ (8 - odr) */
#define BMI160_ODR_TO_HZ(odr_) \
(uint16_t)(odr_ > 8 ? 100 << (odr_ - 8) : 100 >> (8 - odr_))
/* This number of samples should provide only one read burst operation on the
* FIFO most of the time (99.99%). */
#define BMI160_MAX_FIFO_SAMPLES 8
#define BMI160_READ_FLAG 0x80
#define BMI160_HARDWARE_INIT_MAX_TRIES 5
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_AERO
# define BMI160_INT1_GPIO AERO_GPIO_BMI160_INT1
#else
# define BMI160_INT1_GPIO -1
#endif
extern const AP_HAL::HAL& hal;
struct PACKED RawData {
struct {
le16_t x;
le16_t y;
le16_t z;
} gyro;
struct {
le16_t x;
le16_t y;
le16_t z;
} accel;
};
AP_InertialSensor_BMI160::AP_InertialSensor_BMI160(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::Device> dev)
: AP_InertialSensor_Backend(imu)
, _dev(std::move(dev))
{
}
AP_InertialSensor_Backend *
AP_InertialSensor_BMI160::probe(AP_InertialSensor &imu,
AP_HAL::OwnPtr<AP_HAL::SPIDevice> dev)
{
if (!dev) {
return nullptr;
}
auto sensor = new AP_InertialSensor_BMI160(imu, std::move(dev));
if (!sensor) {
return nullptr;
}
if (!sensor->_init()) {
delete sensor;
return nullptr;
}
return sensor;
}
void AP_InertialSensor_BMI160::start()
{
bool r;
if (!_dev->get_semaphore()->take(100)) {
AP_HAL::panic("BMI160: Unable to get semaphore");
}
r = _configure_accel();
if (!r) {
AP_HAL::panic("BMI160: Unable to configure accelerometer");
}
r = _configure_gyro();
if (!r) {
AP_HAL::panic("BMI160: Unable to configure gyroscope");
}
r = _configure_fifo();
if (!r) {
AP_HAL::panic("BMI160: Unable to configure FIFO");
}
if (BMI160_INT1_GPIO >= 0) {
r = _configure_int1_pin();
if (!r) {
AP_HAL::panic("BMI160: unable to configure INT1 pin");
}
}
_dev->get_semaphore()->give();
_accel_instance = _imu.register_accel(BMI160_ODR_TO_HZ(BMI160_ODR), _dev->get_bus_id_devtype(DEVTYPE_BMI160));
_gyro_instance = _imu.register_gyro(BMI160_ODR_TO_HZ(BMI160_ODR), _dev->get_bus_id_devtype(DEVTYPE_BMI160));
/* Call _poll_data() at 1kHz */
_dev->register_periodic_callback(1000,
FUNCTOR_BIND_MEMBER(&AP_InertialSensor_BMI160::_poll_data, bool));
}
bool AP_InertialSensor_BMI160::update()
{
update_accel(_accel_instance);
update_gyro(_gyro_instance);
return true;
}
void AP_InertialSensor_BMI160::_check_err_reg()
{
#ifdef BMI160_DEBUG
uint8_t v;
bool r;
r = _dev->read_registers(BMI160_REG_ERR_REG, &v, 1);
if (!r) {
AP_HAL::panic("BMI160: couldn't read ERR_REG\n");
}
if (v) {
AP_HAL::panic("BMI160: error detected on ERR_REG\n");
}
#endif
}
bool AP_InertialSensor_BMI160::_configure_accel()
{
bool r;
r = _dev->write_register(BMI160_REG_ACC_CONF, BMI160_OSR | BMI160_ODR);
if (!r) {
return false;
}
hal.scheduler->delay(1);
_check_err_reg();
r = _dev->write_register(BMI160_REG_ACC_RANGE, BMI160_ACC_RANGE_BITS);
if (!r) {
return false;
}
hal.scheduler->delay(1);
/* The sensitivity in LSb/g for an accel range i (as defined by the macros
* BMI160_ACC_RANGE_*G) can be calculated with:
* 2 ^ 16 / (2 * 2 ^ (i + 1)) = 2 ^(14 - i)
* That matches the typical values in the datasheet. */
_accel_scale = GRAVITY_MSS / (1 << (14 - BMI160_ACC_RANGE));
return true;
}
bool AP_InertialSensor_BMI160::_configure_gyro()
{
bool r;
r = _dev->write_register(BMI160_REG_GYR_CONF, BMI160_OSR | BMI160_ODR);
if (!r) {
return false;
}
hal.scheduler->delay(1);
_check_err_reg();
r = _dev->write_register(BMI160_REG_GYR_RANGE, BMI160_GYR_RANGE);
if (!r) {
return false;
}
hal.scheduler->delay(1);
/* The sensitivity in LSb/degrees/s a gyro range i can be calculated with:
* 2 ^ 16 / (2 * 2000 / 2 ^ i) = 2 ^ (14 + i) / 1000
* The scale is the inverse of that. */
_gyro_scale = radians(1000.f / (1 << (14 + BMI160_GYR_RANGE)));
return true;
}
bool AP_InertialSensor_BMI160::_configure_int1_pin()
{
bool r;
r = _dev->write_register(BMI160_REG_INT_EN_1, BMI160_INT_FWM_EN);
if (!r) {
hal.console->printf("BMI160: Unable to enable FIFO watermark interrupt engine\n");
return false;
}
hal.scheduler->delay(1);
r = _dev->write_register(BMI160_REG_INT_MAP_1, BMI160_INT_MAP_INT1_FWM);
if (!r) {
hal.console->printf("BMI160: Unable to configure interrupt mapping\n");
return false;
}
hal.scheduler->delay(1);
r = _dev->write_register(BMI160_REG_INT_OUT_CTRL,
BMI160_INT1_OUTPUT_EN | BMI160_INT1_LVL);
if (!r) {
hal.console->printf("BMI160: Unable to configure interrupt output\n");
return false;
}
hal.scheduler->delay(1);
_int1_pin = hal.gpio->channel(BMI160_INT1_GPIO);
if (_int1_pin == nullptr) {
hal.console->printf("BMI160: Couldn't request data ready GPIO channel\n");
return false;
}
_int1_pin->mode(HAL_GPIO_INPUT);
return true;
}
bool AP_InertialSensor_BMI160::_configure_fifo()
{
bool r;
/* The unit for the FIFO watermark is 4 bytes. */
r = _dev->write_register(BMI160_REG_FIFO_CONFIG_0,
sizeof(struct RawData) / 4);
if (!r) {
hal.console->printf("BMI160: Unable to configure FIFO watermark level\n");
return false;
}
hal.scheduler->delay(1);
r = _dev->write_register(BMI160_REG_FIFO_CONFIG_1,
BMI160_FIFO_ACC_EN | BMI160_FIFO_GYR_EN);
if (!r) {
hal.console->printf("BMI160: Unable to enable FIFO\n");
return false;
}
hal.scheduler->delay(1);
_check_err_reg();
r = _dev->write_register(BMI160_REG_CMD, BMI160_CMD_FIFO_FLUSH);
if (!r) {
hal.console->printf("BMI160: Unable to flush FIFO\n");
return false;
}
return true;
}
void AP_InertialSensor_BMI160::_read_fifo()
{
struct RawData raw_data[BMI160_MAX_FIFO_SAMPLES];
uint16_t num_bytes;
uint16_t excess;
uint8_t num_samples = 0;
bool r = true;
static_assert(sizeof(raw_data) <= 100, "Too big to keep on stack");
/* If FIFO watermark not surpassed. */
if (_int1_pin && _int1_pin->read() == 0) {
goto read_fifo_end;
}
r = _dev->read_registers(BMI160_REG_FIFO_LENGTH,
(uint8_t *)&num_bytes,
sizeof(num_bytes));
if (!r) {
goto read_fifo_end;
}
num_bytes = le16toh(num_bytes);
if (!num_bytes) {
goto read_fifo_end;
}
read_fifo_read_data:
if (num_bytes > sizeof(raw_data)) {
excess = num_bytes - sizeof(raw_data);
num_bytes = sizeof(raw_data);
} else {
excess = 0;
}
r = _dev->read_registers(BMI160_REG_FIFO_DATA,
(uint8_t *)raw_data,
num_bytes);
if (!r) {
goto read_fifo_end;
}
/* Read again just once */
if (excess && num_samples) {
hal.console->printf("BMI160: dropping %u samples from fifo\n",
(uint8_t)(excess / sizeof(struct RawData)));
_dev->write_register(BMI160_REG_CMD, BMI160_CMD_FIFO_FLUSH);
excess = 0;
}
num_samples = num_bytes / sizeof(struct RawData);
for (uint8_t i = 0; i < num_samples; i++) {
Vector3f accel{(float)(int16_t)le16toh(raw_data[i].accel.x),
(float)(int16_t)le16toh(raw_data[i].accel.y),
(float)(int16_t)le16toh(raw_data[i].accel.z)};
Vector3f gyro{(float)(int16_t)le16toh(raw_data[i].gyro.x),
(float)(int16_t)le16toh(raw_data[i].gyro.y),
(float)(int16_t)le16toh(raw_data[i].gyro.z)};
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_AERO
accel.rotate(ROTATION_ROLL_180);
gyro.rotate(ROTATION_ROLL_180);
#endif
accel *= _accel_scale;
gyro *= _gyro_scale;
_rotate_and_correct_accel(_accel_instance, accel);
_rotate_and_correct_gyro(_gyro_instance, gyro);
_notify_new_accel_raw_sample(_accel_instance, accel);
_notify_new_gyro_raw_sample(_gyro_instance, gyro);
}
if (excess) {
num_bytes = excess;
goto read_fifo_read_data;
}
read_fifo_end:
if (!r) {
hal.console->printf("BMI160: error on reading FIFO\n");
}
}
bool AP_InertialSensor_BMI160::_poll_data()
{
_read_fifo();
return true;
}
bool AP_InertialSensor_BMI160::_hardware_init()
{
bool ret = false;
hal.scheduler->delay(BMI160_POWERUP_DELAY_MSEC);
if (!_dev->get_semaphore()->take(100)) {
AP_HAL::panic("BMI160: Unable to get semaphore");
}
_dev->set_speed(AP_HAL::Device::SPEED_LOW);
for (unsigned i = 0; i < BMI160_HARDWARE_INIT_MAX_TRIES; i++) {
uint8_t v;
ret = _dev->write_register(BMI160_REG_CMD,
BMI160_CMD_SOFTRESET);
if (!ret) {
continue;
}
hal.scheduler->delay(BMI160_SOFTRESET_DELAY_MSEC);
/* The datasheet recommends doing a read operation on the register 0x7F
* in order to guarantee the sensor works using the SPI protocol. This
* shouldn't have side effects for I2C. */
ret = _dev->read_registers(0x7F, &v, 1);
if (!ret) {
continue;
}
ret = _dev->read_registers(BMI160_REG_CHIPID, &v, 1);
if (!ret) {
continue;
}
if (v != BMI160_CHIPID) {
ret = false;
continue;
}
ret = _dev->write_register(BMI160_REG_CMD,
BMI160_CMD_ACCEL_NORMAL_POWER_MODE);
if (!ret) {
continue;
}
hal.scheduler->delay(BMI160_ACCEL_NORMAL_POWER_MODE_DELAY_MSEC);
ret = _dev->write_register(BMI160_REG_CMD,
BMI160_CMD_GYRO_NORMAL_POWER_MODE);
if (!ret) {
continue;
}
hal.scheduler->delay(BMI160_GYRO_NORMAL_POWER_MODE_DELAY_MSEC);
break;
}
_dev->set_speed(AP_HAL::Device::SPEED_HIGH);
_dev->get_semaphore()->give();
return ret;
}
bool AP_InertialSensor_BMI160::_init()
{
bool ret = false;
_dev->set_read_flag(BMI160_READ_FLAG);
ret = _hardware_init();
if (!ret) {
hal.console->printf("BMI160: failed to init\n");
}
return ret;
}
#endif