Ardupilot2/libraries/AP_Airspeed/AP_Airspeed_UAVCAN.cpp

173 lines
5.0 KiB
C++

#include <AP_HAL/AP_HAL.h>
#if HAL_WITH_UAVCAN
#include "AP_Airspeed_UAVCAN.h"
#include <AP_BoardConfig/AP_BoardConfig_CAN.h>
#include <AP_UAVCAN/AP_UAVCAN.h>
#include <uavcan/equipment/air_data/RawAirData.hpp>
extern const AP_HAL::HAL& hal;
#define debug_airspeed_uavcan(level_debug, can_driver, fmt, args...) do { if ((level_debug) <= AP::can().get_debug_level_driver(can_driver)) { printf(fmt, ##args); }} while (0)
// UAVCAN Frontend Registry Binder
UC_REGISTRY_BINDER(AirspeedCb, uavcan::equipment::air_data::RawAirData);
AP_Airspeed_UAVCAN::DetectedModules AP_Airspeed_UAVCAN::_detected_modules[] = {0};
HAL_Semaphore AP_Airspeed_UAVCAN::_sem_registry;
// constructor
AP_Airspeed_UAVCAN::AP_Airspeed_UAVCAN(AP_Airspeed &_frontend, uint8_t _instance) :
AP_Airspeed_Backend(_frontend, _instance)
{}
void AP_Airspeed_UAVCAN::subscribe_msgs(AP_UAVCAN* ap_uavcan)
{
if (ap_uavcan == nullptr) {
return;
}
auto* node = ap_uavcan->get_node();
uavcan::Subscriber<uavcan::equipment::air_data::RawAirData, AirspeedCb> *airspeed_listener;
airspeed_listener = new uavcan::Subscriber<uavcan::equipment::air_data::RawAirData, AirspeedCb>(*node);
const int airspeed_listener_res = airspeed_listener->start(AirspeedCb(ap_uavcan, &handle_airspeed));
if (airspeed_listener_res < 0) {
AP_HAL::panic("UAVCAN Airspeed subscriber start problem\n");
}
}
bool AP_Airspeed_UAVCAN::take_registry()
{
return _sem_registry.take(HAL_SEMAPHORE_BLOCK_FOREVER);
}
void AP_Airspeed_UAVCAN::give_registry()
{
_sem_registry.give();
}
AP_Airspeed_Backend* AP_Airspeed_UAVCAN::probe(AP_Airspeed &_frontend, uint8_t _instance)
{
if (!take_registry()) {
return nullptr;
}
AP_Airspeed_UAVCAN* backend = nullptr;
for (uint8_t i = 0; i < AIRSPEED_MAX_SENSORS; i++) {
if (_detected_modules[i].driver == nullptr && _detected_modules[i].ap_uavcan != nullptr) {
backend = new AP_Airspeed_UAVCAN(_frontend, _instance);
if (backend == nullptr) {
debug_airspeed_uavcan(2,
_detected_modules[i].ap_uavcan->get_driver_index(),
"Failed register UAVCAN Airspeed Node %d on Bus %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_uavcan->get_driver_index());
} else {
_detected_modules[i].driver = backend;
debug_airspeed_uavcan(2,
_detected_modules[i].ap_uavcan->get_driver_index(),
"Registered UAVCAN Airspeed Node %d on Bus %d\n",
_detected_modules[i].node_id,
_detected_modules[i].ap_uavcan->get_driver_index());
}
break;
}
}
give_registry();
return backend;
}
AP_Airspeed_UAVCAN* AP_Airspeed_UAVCAN::get_uavcan_backend(AP_UAVCAN* ap_uavcan, uint8_t node_id)
{
if (ap_uavcan == nullptr) {
return nullptr;
}
for (uint8_t i = 0; i < AIRSPEED_MAX_SENSORS; i++) {
if (_detected_modules[i].driver != nullptr &&
_detected_modules[i].ap_uavcan == ap_uavcan &&
_detected_modules[i].node_id == node_id ) {
return _detected_modules[i].driver;
}
}
bool detected = false;
for (uint8_t i = 0; i < AIRSPEED_MAX_SENSORS; i++) {
if (_detected_modules[i].ap_uavcan == ap_uavcan && _detected_modules[i].node_id == node_id) {
// detected
detected = true;
break;
}
}
if (!detected) {
for (uint8_t i = 0; i < AIRSPEED_MAX_SENSORS; i++) {
if (_detected_modules[i].ap_uavcan == nullptr) {
_detected_modules[i].ap_uavcan = ap_uavcan;
_detected_modules[i].node_id = node_id;
break;
}
}
}
return nullptr;
}
void AP_Airspeed_UAVCAN::handle_airspeed(AP_UAVCAN* ap_uavcan, uint8_t node_id, const AirspeedCb &cb)
{
if (take_registry()) {
AP_Airspeed_UAVCAN* driver = get_uavcan_backend(ap_uavcan, node_id);
if (driver != nullptr) {
WITH_SEMAPHORE(driver->_sem_airspeed);
driver->_pressure = cb.msg->differential_pressure;
driver->_temperature = cb.msg->static_air_temperature - C_TO_KELVIN;
driver->_last_sample_time_ms = AP_HAL::millis();
}
give_registry();
}
}
bool AP_Airspeed_UAVCAN::init()
{
// always returns true
return true;
}
bool AP_Airspeed_UAVCAN::get_differential_pressure(float &pressure)
{
WITH_SEMAPHORE(_sem_airspeed);
if ((AP_HAL::millis() - _last_sample_time_ms) > 100) {
return false;
}
pressure = _pressure;
return true;
}
bool AP_Airspeed_UAVCAN::get_temperature(float &temperature)
{
WITH_SEMAPHORE(_sem_airspeed);
if ((AP_HAL::millis() - _last_sample_time_ms) > 100) {
return false;
}
temperature = _temperature;
return true;
}
#endif // HAL_WITH_UAVCAN