Ardupilot2/ArduCopter/Log.pde
Jason Short 1ce2308d11 Removed Simple Mode
Added Simple option to mode switch positions
removed unused OptFlow code
added reset lat and lon error
removed unused init_auto
Fixed log formatting
Added simple mode bitmask
removed pitchmax
added CLI setup for enabling Simple mode to any switch position
2011-09-14 13:58:18 -07:00

917 lines
22 KiB
Plaintext

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if LOGGING_ENABLED == ENABLED
// Code to Write and Read packets from DataFlash log memory
// Code to interact with the user to dump or erase logs
#define HEAD_BYTE1 0xA3 // Decimal 163
#define HEAD_BYTE2 0x95 // Decimal 149
#define END_BYTE 0xBA // Decimal 186
// These are function definitions so the Menu can be constructed before the functions
// are defined below. Order matters to the compiler.
static bool print_log_menu(void);
static int8_t dump_log(uint8_t argc, const Menu::arg *argv);
static int8_t erase_logs(uint8_t argc, const Menu::arg *argv);
static int8_t select_logs(uint8_t argc, const Menu::arg *argv);
// This is the help function
// PSTR is an AVR macro to read strings from flash memory
// printf_P is a version of print_f that reads from flash memory
static int8_t help_log(uint8_t argc, const Menu::arg *argv)
{
Serial.printf_P(PSTR("\n"
"Commands:\n"
" dump <n>"
" erase (all logs)\n"
" enable <name> | all\n"
" disable <name> | all\n"
"\n"));
return 0;
}
// Creates a constant array of structs representing menu options
// and stores them in Flash memory, not RAM.
// User enters the string in the console to call the functions on the right.
// See class Menu in AP_Coommon for implementation details
const struct Menu::command log_menu_commands[] PROGMEM = {
{"dump", dump_log},
{"erase", erase_logs},
{"enable", select_logs},
{"disable", select_logs},
{"help", help_log}
};
// A Macro to create the Menu
MENU2(log_menu, "Log", log_menu_commands, print_log_menu);
static void get_log_boundaries(byte log_num, int & start_page, int & end_page);
static bool
print_log_menu(void)
{
int log_start;
int log_end;
byte last_log_num = get_num_logs();
Serial.printf_P(PSTR("logs enabled: "));
if (0 == g.log_bitmask) {
Serial.printf_P(PSTR("none"));
}else{
if (g.log_bitmask & MASK_LOG_ATTITUDE_FAST) Serial.printf_P(PSTR(" ATTITUDE_FAST"));
if (g.log_bitmask & MASK_LOG_ATTITUDE_MED) Serial.printf_P(PSTR(" ATTITUDE_MED"));
if (g.log_bitmask & MASK_LOG_GPS) Serial.printf_P(PSTR(" GPS"));
if (g.log_bitmask & MASK_LOG_PM) Serial.printf_P(PSTR(" PM"));
if (g.log_bitmask & MASK_LOG_CTUN) Serial.printf_P(PSTR(" CTUN"));
if (g.log_bitmask & MASK_LOG_NTUN) Serial.printf_P(PSTR(" NTUN"));
if (g.log_bitmask & MASK_LOG_RAW) Serial.printf_P(PSTR(" RAW"));
if (g.log_bitmask & MASK_LOG_CMD) Serial.printf_P(PSTR(" CMD"));
if (g.log_bitmask & MASK_LOG_CUR) Serial.printf_P(PSTR(" CURRENT"));
if (g.log_bitmask & MASK_LOG_MOTORS) Serial.printf_P(PSTR(" MOTORS"));
if (g.log_bitmask & MASK_LOG_OPTFLOW) Serial.printf_P(PSTR(" OPTFLOW"));
}
Serial.println();
if (last_log_num == 0) {
Serial.printf_P(PSTR("\nNo logs\nType 'dump 0'.\n\n"));
}else{
Serial.printf_P(PSTR("\n%d logs\n"), last_log_num);
for(int i = 1; i < last_log_num + 1; i++) {
get_log_boundaries(i, log_start, log_end);
//Serial.printf_P(PSTR("last_num %d "), last_log_num);
Serial.printf_P(PSTR("Log # %d, start %d, end %d\n"), i, log_start, log_end);
}
Serial.println();
}
return(true);
}
static int8_t
dump_log(uint8_t argc, const Menu::arg *argv)
{
byte dump_log;
int dump_log_start;
int dump_log_end;
//byte last_log_num = get_num_logs();
//Serial.printf_P(PSTR("\n%d logs\n"), last_log_num);
// check that the requested log number can be read
dump_log = argv[1].i;
if (/*(argc != 2) || */ (dump_log < 1)) {
Serial.printf_P(PSTR("bad log # %d\n"), dump_log);
Log_Read(0, 4095);
erase_logs(NULL, NULL);
return(-1);
}
get_log_boundaries(dump_log, dump_log_start, dump_log_end);
/*Serial.printf_P(PSTR("Dumping Log number %d, start %d, end %d\n"),
dump_log,
dump_log_start,
dump_log_end);
*/
Log_Read(dump_log_start, dump_log_end);
//Serial.printf_P(PSTR("Done\n"));
return (0);
}
static int8_t
erase_logs(uint8_t argc, const Menu::arg *argv)
{
//for(int i = 10 ; i > 0; i--) {
// Serial.printf_P(PSTR("ATTENTION - Erasing log in %d seconds.\n"), i);
// delay(1000);
//}
// lay down a bunch of "log end" messages.
Serial.printf_P(PSTR("\nErasing log...\n"));
for(int j = 1; j < 4096; j++)
DataFlash.PageErase(j);
clear_header();
Serial.printf_P(PSTR("\nLog erased.\n"));
return (0);
}
static void clear_header()
{
DataFlash.StartWrite(1);
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_INDEX_MSG);
DataFlash.WriteByte(0);
DataFlash.WriteByte(END_BYTE);
DataFlash.FinishWrite();
}
static int8_t
select_logs(uint8_t argc, const Menu::arg *argv)
{
uint16_t bits;
if (argc != 2) {
Serial.printf_P(PSTR("missing log type\n"));
return(-1);
}
bits = 0;
// Macro to make the following code a bit easier on the eye.
// Pass it the capitalised name of the log option, as defined
// in defines.h but without the LOG_ prefix. It will check for
// that name as the argument to the command, and set the bit in
// bits accordingly.
//
if (!strcasecmp_P(argv[1].str, PSTR("all"))) {
bits = ~0;
} else {
#define TARG(_s) if (!strcasecmp_P(argv[1].str, PSTR(#_s))) bits |= MASK_LOG_ ## _s
TARG(ATTITUDE_FAST);
TARG(ATTITUDE_MED);
TARG(GPS);
TARG(PM);
TARG(CTUN);
TARG(NTUN);
TARG(MODE);
TARG(RAW);
TARG(CMD);
TARG(CUR);
TARG(MOTORS);
TARG(OPTFLOW);
#undef TARG
}
if (!strcasecmp_P(argv[0].str, PSTR("enable"))) {
g.log_bitmask.set_and_save(g.log_bitmask | bits);
}else{
g.log_bitmask.set_and_save(g.log_bitmask & ~bits);
}
return(0);
}
static int8_t
process_logs(uint8_t argc, const Menu::arg *argv)
{
log_menu.run();
return 0;
}
// finds out how many logs are available
static byte get_num_logs(void)
{
int page = 1;
byte data;
byte log_step = 0;
DataFlash.StartRead(1);
while (page == 1) {
data = DataFlash.ReadByte();
switch(log_step){ //This is a state machine to read the packets
case 0:
if(data==HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data==HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data == LOG_INDEX_MSG){
byte num_logs = DataFlash.ReadByte();
//Serial.printf("num_logs, %d\n", num_logs);
return num_logs;
}else{
//Serial.printf("* %d\n", data);
log_step = 0; // Restart, we have a problem...
}
break;
}
page = DataFlash.GetPage();
}
return 0;
}
// send the number of the last log?
static void start_new_log()
{
byte num_existing_logs = get_num_logs();
int start_pages[50] = {0,0,0};
int end_pages[50] = {0,0,0};
if(num_existing_logs > 0){
for(int i = 0; i < num_existing_logs; i++) {
get_log_boundaries(i + 1, start_pages[i], end_pages[i]);
}
end_pages[num_existing_logs - 1] = find_last_log_page(start_pages[num_existing_logs - 1]);
}
if((end_pages[num_existing_logs - 1] < 4095) && (num_existing_logs < MAX_NUM_LOGS /*50*/)) {
if(num_existing_logs > 0)
start_pages[num_existing_logs] = end_pages[num_existing_logs - 1] + 1;
else
start_pages[0] = 2;
num_existing_logs++;
DataFlash.StartWrite(1);
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_INDEX_MSG);
DataFlash.WriteByte(num_existing_logs);
for(int i = 0; i < MAX_NUM_LOGS; i++) {
DataFlash.WriteInt(start_pages[i]);
DataFlash.WriteInt(end_pages[i]);
}
DataFlash.WriteByte(END_BYTE);
DataFlash.FinishWrite();
DataFlash.StartWrite(start_pages[num_existing_logs - 1]);
}else{
gcs.send_text_P(SEVERITY_LOW,PSTR("Logs full"));
}
}
// All log data is stored in page 1?
static void get_log_boundaries(byte log_num, int & start_page, int & end_page)
{
int page = 1;
byte data;
byte log_step = 0;
DataFlash.StartRead(1);
while (page == 1) {
data = DataFlash.ReadByte();
switch(log_step) //This is a state machine to read the packets
{
case 0:
if(data==HEAD_BYTE1) // Head byte 1
log_step++;
break;
case 1:
if(data==HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
if(data==LOG_INDEX_MSG){
byte num_logs = DataFlash.ReadByte();
for(int i=0;i<log_num;i++) {
start_page = DataFlash.ReadInt();
end_page = DataFlash.ReadInt();
}
if(log_num==num_logs)
end_page = find_last_log_page(start_page);
return; // This is the normal exit point
}else{
log_step=0; // Restart, we have a problem...
}
break;
}
page = DataFlash.GetPage();
}
// Error condition if we reach here with page = 2 TO DO - report condition
}
//
static int find_last_log_page(int bottom_page)
{
int top_page = 4096;
int look_page;
long check;
while((top_page - bottom_page) > 1) {
look_page = (top_page + bottom_page) / 2;
DataFlash.StartRead(look_page);
check = DataFlash.ReadLong();
//Serial.printf("look page:%d, check:%d\n", look_page, check);
if(check == (long)0xFFFFFFFF)
top_page = look_page;
else
bottom_page = look_page;
}
return top_page;
}
// Write an GPS packet. Total length : 30 bytes
static void Log_Write_GPS()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_GPS_MSG);
DataFlash.WriteLong(g_gps->time); // 1
DataFlash.WriteByte(g_gps->num_sats); // 2
DataFlash.WriteLong(current_loc.lat); // 3
DataFlash.WriteLong(current_loc.lng); // 4
DataFlash.WriteLong(current_loc.alt); // 5
DataFlash.WriteLong(g_gps->altitude); // 6
DataFlash.WriteInt(g_gps->ground_speed); // 7
DataFlash.WriteInt((uint16_t)g_gps->ground_course); // 8
DataFlash.WriteByte(END_BYTE);
}
// Read a GPS packet
static void Log_Read_GPS()
{
Serial.printf_P(PSTR("GPS, %ld, %d, "
"%4.7f, %4.7f, %4.4f, %4.4f, "
"%d, %u\n"),
DataFlash.ReadLong(), // 1 time
(int)DataFlash.ReadByte(), // 2 sats
(float)DataFlash.ReadLong() / t7, // 3 lat
(float)DataFlash.ReadLong() / t7, // 4 lon
(float)DataFlash.ReadLong() / 100.0, // 5 gps alt
(float)DataFlash.ReadLong() / 100.0, // 6 sensor alt
DataFlash.ReadInt(), // 7 ground speed
(uint16_t)DataFlash.ReadInt()); // 8 ground course
}
// Write an raw accel/gyro data packet. Total length : 28 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
static void Log_Write_Raw()
{
Vector3f gyro = imu.get_gyro();
Vector3f accel = imu.get_accel();
//Vector3f accel_filt = imu.get_accel_filtered();
gyro *= t7; // Scale up for storage as long integers
accel *= t7;
//accel_filt *= t7;
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_RAW_MSG);
DataFlash.WriteLong((long)gyro.x);
DataFlash.WriteLong((long)gyro.y);
DataFlash.WriteLong((long)gyro.z);
//DataFlash.WriteLong((long)(accels_rot.x * t7));
//DataFlash.WriteLong((long)(accels_rot.y * t7));
//DataFlash.WriteLong((long)(accels_rot.z * t7));
DataFlash.WriteLong((long)accel.x);
DataFlash.WriteLong((long)accel.y);
DataFlash.WriteLong((long)accel.z);
DataFlash.WriteByte(END_BYTE);
}
#endif
// Read a raw accel/gyro packet
static void Log_Read_Raw()
{
float logvar;
Serial.printf_P(PSTR("RAW,"));
for (int y = 0; y < 6; y++) {
logvar = (float)DataFlash.ReadLong() / t7;
Serial.print(logvar);
Serial.print(comma);
}
Serial.println(" ");
}
static void Log_Write_Current()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CURRENT_MSG);
DataFlash.WriteInt(g.rc_3.control_in);
DataFlash.WriteLong(throttle_integrator);
DataFlash.WriteInt((int)(battery_voltage * 100.0));
DataFlash.WriteInt((int)(current_amps * 100.0));
DataFlash.WriteInt((int)current_total);
DataFlash.WriteByte(END_BYTE);
}
// Read a Current packet
static void Log_Read_Current()
{
Serial.printf_P(PSTR("CURR: %d, %ld, %4.4f, %4.4f, %d\n"),
DataFlash.ReadInt(),
DataFlash.ReadLong(),
((float)DataFlash.ReadInt() / 100.f),
((float)DataFlash.ReadInt() / 100.f),
DataFlash.ReadInt());
}
static void Log_Write_Motors()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MOTORS_MSG);
DataFlash.WriteInt(motor_out[CH_1]);
DataFlash.WriteInt(motor_out[CH_2]);
DataFlash.WriteInt(motor_out[CH_3]);
DataFlash.WriteInt(motor_out[CH_4]);
DataFlash.WriteByte(END_BYTE);
}
// Read a Current packet
static void Log_Read_Motors()
{
Serial.printf_P(PSTR("MOT: %d, %d, %d, %d\n"),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt());
}
#ifdef OPTFLOW_ENABLED
// Write an optical flow packet. Total length : 18 bytes
static void Log_Write_Optflow()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_OPTFLOW_MSG);
DataFlash.WriteInt((int)optflow.dx);
DataFlash.WriteInt((int)optflow.dy);
DataFlash.WriteInt((int)optflow.surface_quality);
DataFlash.WriteLong(optflow.lat);//optflow_offset.lat + optflow.lat);
DataFlash.WriteLong(optflow.lng);//optflow_offset.lng + optflow.lng);
DataFlash.WriteByte(END_BYTE);
}
#endif
static void Log_Read_Optflow()
{
Serial.printf_P(PSTR("OF, %d, %d, %d, %4.7f, %4.7f\n"),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
(float)DataFlash.ReadLong(),// / t7,
(float)DataFlash.ReadLong() // / t7
);
}
static void Log_Write_Nav_Tuning()
{
//Matrix3f tempmat = dcm.get_dcm_matrix();
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_NAV_TUNING_MSG);
DataFlash.WriteInt((int)wp_distance); // 1
DataFlash.WriteByte(wp_verify_byte); // 2
DataFlash.WriteInt((int)(target_bearing/100)); // 3
DataFlash.WriteInt((int)long_error); // 4
DataFlash.WriteInt((int)lat_error); // 5
/*
DataFlash.WriteInt((int)long_error); // 5
DataFlash.WriteInt((int)lat_error); // 6
DataFlash.WriteInt(x_rate_error); // 4
DataFlash.WriteInt(y_rate_error); // 4
DataFlash.WriteInt((int)nav_lon); // 7
DataFlash.WriteInt((int)nav_lat); // 8
DataFlash.WriteInt((int)g.pi_nav_lon.get_integrator()); // 7
DataFlash.WriteInt((int)g.pi_nav_lat.get_integrator()); // 8
DataFlash.WriteInt((int)g.pi_loiter_lon.get_integrator()); // 7
DataFlash.WriteInt((int)g.pi_loiter_lat.get_integrator()); // 8
*/
DataFlash.WriteByte(END_BYTE);
}
static void Log_Read_Nav_Tuning()
{
Serial.printf_P(PSTR("NTUN, %d, %d, %d, %d, %d, %d\n"),
DataFlash.ReadInt(), // distance
DataFlash.ReadByte(), // wp_verify_byte
DataFlash.ReadInt(), // target_bearing
DataFlash.ReadInt(), // long_error
DataFlash.ReadInt()); // lat_error
/*
// 1 2 3 4
Serial.printf_P(PSTR( "NTUN, %d, %d, %d, %d, "
"%d, %d, %d, %d, "
"%d, %d, %d, %d, "
"%d, %d\n"),
DataFlash.ReadInt(), //distance
DataFlash.ReadByte(), //bitmask
DataFlash.ReadInt(), //target bearing
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt()); //nav bearing
*/
}
// Write a control tuning packet. Total length : 22 bytes
#if HIL_MODE != HIL_MODE_ATTITUDE
static void Log_Write_Control_Tuning()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CONTROL_TUNING_MSG);
// yaw
DataFlash.WriteInt((int)(dcm.yaw_sensor/100)); //1
DataFlash.WriteInt((int)(nav_yaw/100)); //2
DataFlash.WriteInt((int)yaw_error/100); //3
// Alt hold
DataFlash.WriteInt(g.rc_3.servo_out); //4
DataFlash.WriteInt(sonar_alt); //5
DataFlash.WriteInt(baro_alt); //6
DataFlash.WriteInt((int)next_WP.alt); //7
DataFlash.WriteInt((int)g.pi_throttle.get_integrator());//8
DataFlash.WriteByte(END_BYTE);
}
#endif
// Read an control tuning packet
static void Log_Read_Control_Tuning()
{
Serial.printf_P(PSTR( "CTUN, "
"%d, %d, %d, "
"%d, %d, %d, "
"%d, %d\n"),
// Control
DataFlash.ReadInt(),
DataFlash.ReadInt(),
// yaw
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
// Alt Hold
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt());
}
// Write a performance monitoring packet. Total length : 19 bytes
static void Log_Write_Performance()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_PERFORMANCE_MSG);
//DataFlash.WriteByte( delta_ms_fast_loop);
//DataFlash.WriteByte( loop_step);
//*
//DataFlash.WriteLong( millis()- perf_mon_timer);
//DataFlash.WriteInt ( mainLoop_count);
DataFlash.WriteInt ( G_Dt_max); //1
DataFlash.WriteByte( dcm.gyro_sat_count); //2
DataFlash.WriteByte( imu.adc_constraints); //3
DataFlash.WriteByte( dcm.renorm_sqrt_count); //4
DataFlash.WriteByte( dcm.renorm_blowup_count); //5
DataFlash.WriteByte( gps_fix_count); //6
DataFlash.WriteInt ( (int)(dcm.get_health() * 1000)); //7
DataFlash.WriteLong ( throttle_integrator); //8
DataFlash.WriteByte(END_BYTE);
}
// Read a performance packet
static void Log_Read_Performance()
{
Serial.printf_P(PSTR( "PM, %d, %d, %d, "
"%d, %d, %d, "
"%d, %ld\n"),
// Control
//DataFlash.ReadLong(),
//DataFlash.ReadInt(),
DataFlash.ReadInt(), //1
DataFlash.ReadByte(), //2
DataFlash.ReadByte(), //3
DataFlash.ReadByte(), //4
DataFlash.ReadByte(), //5
DataFlash.ReadByte(), //6
DataFlash.ReadInt(), //7
DataFlash.ReadLong()); //8
}
// Write a command processing packet.
static void Log_Write_Cmd(byte num, struct Location *wp)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_CMD_MSG);
DataFlash.WriteByte(g.waypoint_total);
DataFlash.WriteByte(num);
DataFlash.WriteByte(wp->id);
DataFlash.WriteByte(wp->options);
DataFlash.WriteByte(wp->p1);
DataFlash.WriteLong(wp->alt);
DataFlash.WriteLong(wp->lat);
DataFlash.WriteLong(wp->lng);
DataFlash.WriteByte(END_BYTE);
}
//CMD, 3, 0, 16, 8, 1, 800, 340440192, -1180692736
// Read a command processing packet
static void Log_Read_Cmd()
{
Serial.printf_P(PSTR( "CMD, %d, %d, %d, %d, %d, %ld, %ld, %ld\n"),
// WP total
DataFlash.ReadByte(),
// num, id, p1, options
DataFlash.ReadByte(),
DataFlash.ReadByte(),
DataFlash.ReadByte(),
DataFlash.ReadByte(),
// Alt, lat long
DataFlash.ReadLong(),
DataFlash.ReadLong(),
DataFlash.ReadLong());
}
// Write an attitude packet. Total length : 10 bytes
static void Log_Write_Attitude()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_ATTITUDE_MSG);
DataFlash.WriteInt((int)dcm.roll_sensor);
DataFlash.WriteInt((int)dcm.pitch_sensor);
DataFlash.WriteInt((uint16_t)dcm.yaw_sensor);
DataFlash.WriteInt((int)g.rc_1.servo_out);
DataFlash.WriteInt((int)g.rc_2.servo_out);
DataFlash.WriteInt((int)g.rc_4.servo_out);
DataFlash.WriteByte(END_BYTE);
}
// Read an attitude packet
static void Log_Read_Attitude()
{
Serial.printf_P(PSTR("ATT, %d, %d, %u, %d, %d, $d\n"),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
(uint16_t)DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt(),
DataFlash.ReadInt());
}
// Write a mode packet. Total length : 5 bytes
static void Log_Write_Mode(byte mode)
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_MODE_MSG);
DataFlash.WriteByte(mode);
DataFlash.WriteInt(g.throttle_cruise);
DataFlash.WriteByte(END_BYTE);
}
// Read a mode packet
static void Log_Read_Mode()
{
Serial.printf_P(PSTR("MOD:"));
Serial.print(flight_mode_strings[DataFlash.ReadByte()]);
Serial.printf_P(PSTR(", %d\n"),DataFlash.ReadInt());
}
static void Log_Write_Startup()
{
DataFlash.WriteByte(HEAD_BYTE1);
DataFlash.WriteByte(HEAD_BYTE2);
DataFlash.WriteByte(LOG_STARTUP_MSG);
DataFlash.WriteByte(END_BYTE);
}
// Read a mode packet
static void Log_Read_Startup()
{
Serial.printf_P(PSTR("START UP\n"));
}
// Read the DataFlash log memory : Packet Parser
static void Log_Read(int start_page, int end_page)
{
byte data;
byte log_step = 0;
int page = start_page;
DataFlash.StartRead(start_page);
while (page < end_page && page != -1){
data = DataFlash.ReadByte();
// This is a state machine to read the packets
switch(log_step){
case 0:
if(data == HEAD_BYTE1) // Head byte 1
log_step++;
else
Serial.println(".");
break;
case 1:
if(data == HEAD_BYTE2) // Head byte 2
log_step++;
else
log_step = 0;
break;
case 2:
log_step = 0;
switch(data){
case LOG_ATTITUDE_MSG:
Log_Read_Attitude();
break;
case LOG_MODE_MSG:
Log_Read_Mode();
break;
case LOG_CONTROL_TUNING_MSG:
Log_Read_Control_Tuning();
break;
case LOG_NAV_TUNING_MSG:
Log_Read_Nav_Tuning();
break;
case LOG_PERFORMANCE_MSG:
Log_Read_Performance();
break;
case LOG_RAW_MSG:
Log_Read_Raw();
break;
case LOG_CMD_MSG:
Log_Read_Cmd();
break;
case LOG_CURRENT_MSG:
Log_Read_Current();
break;
case LOG_STARTUP_MSG:
Log_Read_Startup();
break;
case LOG_MOTORS_MSG:
Log_Read_Motors();
break;
case LOG_OPTFLOW_MSG:
Log_Read_Optflow();
break;
case LOG_GPS_MSG:
Log_Read_GPS();
break;
}
break;
}
page = DataFlash.GetPage();
}
}
#else // LOGGING_ENABLED
static void Log_Write_Startup() {}
static void Log_Read_Startup() {}
static void Log_Read(int start_page, int end_page) {}
static void Log_Write_Cmd(byte num, struct Location *wp) {}
static void Log_Write_Mode(byte mode) {}
static void start_new_log() {}
static void Log_Write_Raw() {}
static void Log_Write_GPS() {}
static void Log_Write_Current() {}
static void Log_Write_Attitude() {}
#ifdef OPTFLOW_ENABLED
static void Log_Write_Optflow() {}
#endif
static void Log_Write_Nav_Tuning() {}
static void Log_Write_Control_Tuning() {}
static void Log_Write_Motors() {}
static void Log_Write_Performance() {}
static int8_t process_logs(uint8_t argc, const Menu::arg *argv) { return 0; }
#endif // LOGGING_ENABLED