Ardupilot2/libraries/AP_EFI/AP_EFI_Serial_MS.cpp
2025-01-02 23:22:42 +11:00

240 lines
8.4 KiB
C++

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_EFI_config.h"
#if AP_EFI_SERIAL_MS_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <AP_SerialManager/AP_SerialManager.h>
#include "AP_EFI_Serial_MS.h"
extern const AP_HAL::HAL &hal;
AP_EFI_Serial_MS::AP_EFI_Serial_MS(AP_EFI &_frontend):
AP_EFI_Backend(_frontend)
{
internal_state.estimated_consumed_fuel_volume_cm3 = 0; // Just to be sure
port = AP::serialmanager().find_serial(AP_SerialManager::SerialProtocol_EFI, 0);
}
void AP_EFI_Serial_MS::update()
{
if (!port) {
return;
}
uint32_t now = AP_HAL::millis();
const uint32_t expected_bytes = 2 + (RT_LAST_OFFSET - RT_FIRST_OFFSET) + 4;
if (port->available() >= expected_bytes && read_incoming_realtime_data()) {
copy_to_frontend();
}
const uint32_t last_request_delta = (now - last_request_ms);
const uint32_t available = port->available();
if (((last_request_delta > 150) && (available > 0)) || // nothing in our input buffer 150 ms after request
((last_request_delta > 90) && (available == 0))) { // we requested something over 90 ms ago, but didn't get any data
port->discard_input();
last_request_ms = now;
// Request an update from the realtime table (7).
// The data we need start at offset 6 and ends at 129
send_request(7, RT_FIRST_OFFSET, RT_LAST_OFFSET);
}
}
bool AP_EFI_Serial_MS::read_incoming_realtime_data()
{
// Data is parsed directly from the buffer, otherwise we would need to allocate
// several hundred bytes for the entire realtime data table or request every
// value individually
uint16_t message_length = 0;
// reset checksum before reading new data
checksum = 0;
// Message length field begins the message (16 bits, excluded from CRC calculation)
// Message length value excludes the message length and CRC bytes
message_length = port->read() << 8;
message_length += port->read();
if (message_length >= 256) {
// don't process invalid messages
// hal.console->printf("message_length: %u\n", message_length);
return false;
}
// Response Flag (see "response_codes" enum)
response_flag = read_byte_CRC32();
if (response_flag != RESPONSE_WRITE_OK) {
// abort read if we did not receive the correct response code;
return false;
}
// Iterate over the payload bytes
for (uint16_t offset=RT_FIRST_OFFSET; offset < (RT_FIRST_OFFSET + message_length - 1); offset++) {
uint8_t data = read_byte_CRC32();
float temp_float;
switch (offset) {
case PW1_MSB:
internal_state.cylinder_status.injection_time_ms = (float)((data << 8) + read_byte_CRC32())/1000.0f;
offset++; // increment the counter because we read a byte in the previous line
break;
case RPM_MSB:
// Read 16 bit RPM
internal_state.engine_speed_rpm = (data << 8) + read_byte_CRC32();
offset++;
break;
case ADVANCE_MSB:
internal_state.cylinder_status.ignition_timing_deg = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
break;
case ENGINE_BM:
break;
case BAROMETER_MSB:
internal_state.atmospheric_pressure_kpa = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
break;
case MAP_MSB:
internal_state.intake_manifold_pressure_kpa = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
break;
case MAT_MSB:
temp_float = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
internal_state.intake_manifold_temperature = degF_to_Kelvin(temp_float);
break;
case CHT_MSB:
temp_float = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
internal_state.cylinder_status.cylinder_head_temperature = degF_to_Kelvin(temp_float);
break;
case TPS_MSB:
temp_float = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
internal_state.throttle_position_percent = roundf(temp_float);
break;
case AFR1_MSB:
temp_float = (float)((data << 8) + read_byte_CRC32())*0.1f;
offset++;
internal_state.cylinder_status.lambda_coefficient = temp_float;
break;
case DWELL_MSB:
temp_float = (float)((data << 8) + read_byte_CRC32())*0.1f;
internal_state.spark_dwell_time_ms = temp_float;
offset++;
break;
case LOAD:
internal_state.engine_load_percent = data;
break;
case FUEL_PRESSURE_MSB:
// MS Fuel Pressure is unitless, store as KPA anyway
temp_float = (float)((data << 8) + read_byte_CRC32());
internal_state.fuel_pressure = temp_float;
offset++;
break;
}
}
// Read the four CRC bytes
uint32_t received_CRC;
received_CRC = port->read() << 24;
received_CRC += port->read() << 16;
received_CRC += port->read() << 8;
received_CRC += port->read();
if (received_CRC != checksum) {
// hal.console->printf("EFI CRC: 0x%08x 0x%08x\n", received_CRC, checksum);
return false;
}
// Calculate Fuel Consumption
// Duty Cycle (Percent, because that's how HFE gives us the calibration coefficients)
float duty_cycle = (internal_state.cylinder_status.injection_time_ms * internal_state.engine_speed_rpm)/600.0f;
uint32_t current_time = AP_HAL::millis();
// Super Simplified integration method - Error Analysis TBD
// This calculation gives erroneous results when the engine isn't running
if (internal_state.engine_speed_rpm > RPM_THRESHOLD) {
internal_state.fuel_consumption_rate_cm3pm = duty_cycle*get_coef1() - get_coef2();
internal_state.estimated_consumed_fuel_volume_cm3 += internal_state.fuel_consumption_rate_cm3pm * (current_time - internal_state.last_updated_ms)/60000.0f;
} else {
internal_state.fuel_consumption_rate_cm3pm = 0;
}
internal_state.last_updated_ms = current_time;
return true;
}
void AP_EFI_Serial_MS::send_request(uint8_t table, uint16_t first_offset, uint16_t last_offset)
{
uint16_t length = last_offset - first_offset + 1;
// Fixed message size (0x0007)
// Command 'r' (0x72)
// Null CANid (0x00)
const uint8_t data[9] = {
0x00,
0x07,
0x72,
0x00,
(uint8_t)table,
(uint8_t)(first_offset >> 8),
(uint8_t)(first_offset),
(uint8_t)(length >> 8),
(uint8_t)(length)
};
uint32_t crc = 0;
// Write the request and calc CRC
for (uint8_t i = 0; i != sizeof(data) ; i++) {
// Message size is excluded from CRC
if (i > 1) {
crc = CRC32_compute_byte(crc, data[i]);
}
port->write(data[i]);
}
// Write the CRC32
port->write((uint8_t)(crc >> 24));
port->write((uint8_t)(crc >> 16));
port->write((uint8_t)(crc >> 8));
port->write((uint8_t)crc);
}
uint8_t AP_EFI_Serial_MS::read_byte_CRC32()
{
// Read a byte and update the CRC
uint8_t data = port->read();
checksum = CRC32_compute_byte(checksum, data);
return data;
}
// CRC32 matching MegaSquirt
uint32_t AP_EFI_Serial_MS::CRC32_compute_byte(uint32_t crc, uint8_t data)
{
crc ^= ~0U;
crc = crc_crc32(crc, &data, 1);
crc ^= ~0U;
return crc;
}
#endif // AP_EFI_SERIAL_MS_ENABLED