Ardupilot2/libraries/AP_Math/AP_Math.h
David Dewey 17374ff5e8 AP_Math: fast_atan2
This is 126us per call vs 199us on the AVR.  it is accurate to about
0.28 degrees

Committed by rmackay9 but contribution is from David Dewey
2014-06-06 18:50:41 +09:00

183 lines
6.0 KiB
C

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#ifndef AP_MATH_H
#define AP_MATH_H
// Assorted useful math operations for ArduPilot(Mega)
#include <AP_Common.h>
#include <AP_Param.h>
#include <math.h>
#ifdef __AVR__
# include <AP_Math_AVR_Compat.h>
#endif
#include <stdint.h>
#include "rotations.h"
#include "vector2.h"
#include "vector3.h"
#include "matrix3.h"
#include "quaternion.h"
#include "polygon.h"
#include "edc.h"
#ifndef M_PI_F
#define M_PI_F 3.141592653589793f
#endif
#ifndef PI
# define PI M_PI_F
#endif
#ifndef M_PI_2
# define M_PI_2 1.570796326794897f
#endif
//Single precision conversions
#define DEG_TO_RAD 0.017453292519943295769236907684886f
#define RAD_TO_DEG 57.295779513082320876798154814105f
//GPS Specific double precision conversions
//The precision here does matter when using the wsg* functions for converting
//between LLH and ECEF coordinates. Test code in examlpes/location/location.pde
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
#define DEG_TO_RAD_DOUBLE 0.0174532925199432954743716805978692718781530857086181640625 // equals to (M_PI / 180.0)
#define RAD_TO_DEG_DOUBLE 57.29577951308232286464772187173366546630859375 // equals to (180.0 / M_PI)
#endif
#define RadiansToCentiDegrees(x) ((x) * 5729.5779513082320876798154814105f)
// acceleration due to gravity in m/s/s
#define GRAVITY_MSS 9.80665f
// radius of earth in meters
#define RADIUS_OF_EARTH 6378100
#define ROTATION_COMBINATION_SUPPORT 0
// convert a longitude or latitude point to meters or centimeteres.
// Note: this does not include the longitude scaling which is dependent upon location
#define LATLON_TO_M 0.01113195f
#define LATLON_TO_CM 1.113195f
// Semi-major axis of the Earth, in meters.
#define WGS84_A 6378137.0
//Inverse flattening of the Earth
#define WGS84_IF 298.257223563
// The flattening of the Earth
#define WGS84_F (1/WGS84_IF)
// Semi-minor axis of the Earth in meters
#define WGS84_B (WGS84_A*(1-WGS84_F))
// Eccentricity of the Earth
#define WGS84_E (sqrt(2*WGS84_F - WGS84_F*WGS84_F))
// define AP_Param types AP_Vector3f and Ap_Matrix3f
AP_PARAMDEFV(Matrix3f, Matrix3f, AP_PARAM_MATRIX3F);
AP_PARAMDEFV(Vector3f, Vector3f, AP_PARAM_VECTOR3F);
// a varient of asin() that always gives a valid answer.
float safe_asin(float v);
// a varient of sqrt() that always gives a valid answer.
float safe_sqrt(float v);
// a faster varient of atan. accurate to 6 decimal places for values between -1 ~ 1 but then diverges quickly
float fast_atan(float v);
// fast_atan2 - faster version of atan2
// 126 us on AVR cpu vs 199 for regular atan2
// absolute error is < 0.005 radians or 0.28 degrees
// origin source: https://gist.github.com/volkansalma/2972237/raw/
float fast_atan2(float y, float x);
#if ROTATION_COMBINATION_SUPPORT
// find a rotation that is the combination of two other
// rotations. This is used to allow us to add an overall board
// rotation to an existing rotation of a sensor such as the compass
enum Rotation rotation_combination(enum Rotation r1, enum Rotation r2, bool *found = NULL);
#endif
// longitude_scale - returns the scaler to compensate for shrinking longitude as you move north or south from the equator
// Note: this does not include the scaling to convert longitude/latitude points to meters or centimeters
float longitude_scale(const struct Location &loc);
// return distance in meters between two locations
float get_distance(const struct Location &loc1, const struct Location &loc2);
// return distance in centimeters between two locations
uint32_t get_distance_cm(const struct Location &loc1, const struct Location &loc2);
// return bearing in centi-degrees between two locations
int32_t get_bearing_cd(const struct Location &loc1, const struct Location &loc2);
// see if location is past a line perpendicular to
// the line between point1 and point2. If point1 is
// our previous waypoint and point2 is our target waypoint
// then this function returns true if we have flown past
// the target waypoint
bool location_passed_point(const struct Location & location,
const struct Location & point1,
const struct Location & point2);
// extrapolate latitude/longitude given bearing and distance
void location_update(struct Location &loc, float bearing, float distance);
// extrapolate latitude/longitude given distances north and east
void location_offset(struct Location &loc, float ofs_north, float ofs_east);
/*
return the distance in meters in North/East plane as a N/E vector
from loc1 to loc2
*/
Vector2f location_diff(const struct Location &loc1, const struct Location &loc2);
/*
wrap an angle in centi-degrees
*/
int32_t wrap_360_cd(int32_t error);
int32_t wrap_180_cd(int32_t error);
float wrap_360_cd_float(float angle);
float wrap_180_cd_float(float angle);
/*
wrap an angle defined in radians to -PI ~ PI (equivalent to +- 180 degrees)
*/
float wrap_PI(float angle_in_radians);
/*
print a int32_t lat/long in decimal degrees
*/
void print_latlon(AP_HAL::BetterStream *s, int32_t lat_or_lon);
#if HAL_CPU_CLASS >= HAL_CPU_CLASS_75
//Convert between LLH and ECEF coordinate systems
void wgsllh2ecef(const Vector3d &llh, Vector3d &ecef);
void wgsecef2llh(const Vector3d &ecef, Vector3d &llh);
#endif
// constrain a value
float constrain_float(float amt, float low, float high);
int16_t constrain_int16(int16_t amt, int16_t low, int16_t high);
int32_t constrain_int32(int32_t amt, int32_t low, int32_t high);
// degrees -> radians
float radians(float deg);
// radians -> degrees
float degrees(float rad);
// square
float sq(float v);
// sqrt of sum of squares
float pythagorous2(float a, float b);
float pythagorous3(float a, float b, float c);
#ifdef radians
#error "Build is including Arduino base headers"
#endif
/* The following three functions used to be arduino core macros */
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#endif // AP_MATH_H