Ardupilot2/libraries/AP_NavEKF3/AP_NavEKF3_Logging.cpp

428 lines
14 KiB
C++

#include "AP_NavEKF3.h"
#include "AP_NavEKF3_core.h"
#include <AP_HAL/HAL.h>
#include <AP_Logger/AP_Logger.h>
#include <AP_DAL/AP_DAL.h>
void NavEKF3_core::Log_Write_XKF1(uint64_t time_us) const
{
// Write first EKF packet
Vector3f euler;
Vector2f posNE;
float posD;
Vector3f velNED;
Vector3f gyroBias;
float posDownDeriv;
Location originLLH;
getEulerAngles(euler);
getVelNED(velNED);
getPosNE(posNE);
getPosD(posD);
getGyroBias(gyroBias);
posDownDeriv = getPosDownDerivative();
if (!getOriginLLH(originLLH)) {
originLLH.alt = 0;
}
const struct log_XKF1 pkt{
LOG_PACKET_HEADER_INIT(LOG_XKF1_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
roll : (int16_t)(100*degrees(euler.x)), // roll angle (centi-deg, displayed as deg due to format string)
pitch : (int16_t)(100*degrees(euler.y)), // pitch angle (centi-deg, displayed as deg due to format string)
yaw : (uint16_t)wrap_360_cd(100*degrees(euler.z)), // yaw angle (centi-deg, displayed as deg due to format string)
velN : (float)(velNED.x), // velocity North (m/s)
velE : (float)(velNED.y), // velocity East (m/s)
velD : (float)(velNED.z), // velocity Down (m/s)
posD_dot : (float)(posDownDeriv), // first derivative of down position
posN : (float)(posNE.x), // metres North
posE : (float)(posNE.y), // metres East
posD : (float)(posD), // metres Down
gyrX : (int16_t)(100*degrees(gyroBias.x)), // cd/sec, displayed as deg/sec due to format string
gyrY : (int16_t)(100*degrees(gyroBias.y)), // cd/sec, displayed as deg/sec due to format string
gyrZ : (int16_t)(100*degrees(gyroBias.z)), // cd/sec, displayed as deg/sec due to format string
originHgt : originLLH.alt // WGS-84 altitude of EKF origin in cm
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
void NavEKF3_core::Log_Write_XKF2(uint64_t time_us) const
{
// Write second EKF packet
Vector3f accelBias;
Vector3f wind;
Vector3f magNED;
Vector3f magXYZ;
getAccelBias(accelBias);
getWind(wind);
getMagNED(magNED);
getMagXYZ(magXYZ);
Vector2f dragInnov;
float betaInnov = 0;
getSynthAirDataInnovations(dragInnov, betaInnov);
const struct log_XKF2 pkt2{
LOG_PACKET_HEADER_INIT(LOG_XKF2_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
accBiasX : (int16_t)(100*accelBias.x),
accBiasY : (int16_t)(100*accelBias.y),
accBiasZ : (int16_t)(100*accelBias.z),
windN : (int16_t)(100*wind.x),
windE : (int16_t)(100*wind.y),
magN : (int16_t)(magNED.x),
magE : (int16_t)(magNED.y),
magD : (int16_t)(magNED.z),
magX : (int16_t)(magXYZ.x),
magY : (int16_t)(magXYZ.y),
magZ : (int16_t)(magXYZ.z),
innovDragX : dragInnov.x,
innovDragY : dragInnov.y,
innovSideslip : betaInnov
};
AP::logger().WriteBlock(&pkt2, sizeof(pkt2));
}
void NavEKF3_core::Log_Write_XKFS(uint64_t time_us) const
{
// Write sensor selection EKF packet
const struct log_XKFS pkt {
LOG_PACKET_HEADER_INIT(LOG_XKFS_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
mag_index : magSelectIndex,
baro_index : selected_baro,
gps_index : selected_gps,
airspeed_index : getActiveAirspeed()
};
AP::logger().WriteBlock(&pkt, sizeof(pkt));
}
void NavEKF3_core::Log_Write_XKF3(uint64_t time_us) const
{
// Write third EKF packet
Vector3f velInnov;
Vector3f posInnov;
Vector3f magInnov;
float tasInnov = 0;
float yawInnov = 0;
getInnovations(velInnov, posInnov, magInnov, tasInnov, yawInnov);
const struct log_XKF3 pkt3{
LOG_PACKET_HEADER_INIT(LOG_XKF3_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
innovVN : (int16_t)(100*velInnov.x),
innovVE : (int16_t)(100*velInnov.y),
innovVD : (int16_t)(100*velInnov.z),
innovPN : (int16_t)(100*posInnov.x),
innovPE : (int16_t)(100*posInnov.y),
innovPD : (int16_t)(100*posInnov.z),
innovMX : (int16_t)(magInnov.x),
innovMY : (int16_t)(magInnov.y),
innovMZ : (int16_t)(magInnov.z),
innovYaw : (int16_t)(100*degrees(yawInnov)),
innovVT : (int16_t)(100*tasInnov),
rerr : frontend->coreRelativeErrors[core_index],
errorScore : frontend->coreErrorScores[core_index]
};
AP::logger().WriteBlock(&pkt3, sizeof(pkt3));
}
void NavEKF3_core::Log_Write_XKF4(uint64_t time_us) const
{
// Write fourth EKF packet
float velVar = 0;
float posVar = 0;
float hgtVar = 0;
Vector3f magVar;
float tasVar = 0;
uint16_t _faultStatus=0;
Vector2f offset;
const uint8_t timeoutStatus =
posTimeout<<0 |
velTimeout<<1 |
hgtTimeout<<2 |
magTimeout<<3 |
tasTimeout<<4;
nav_filter_status solutionStatus {};
nav_gps_status gpsStatus {};
getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
float tempVar = fmaxf(fmaxf(magVar.x,magVar.y),magVar.z);
getFilterFaults(_faultStatus);
getFilterStatus(solutionStatus);
getFilterGpsStatus(gpsStatus);
const struct log_NKF4 pkt4{
LOG_PACKET_HEADER_INIT(LOG_XKF4_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
sqrtvarV : (int16_t)(100*velVar),
sqrtvarP : (int16_t)(100*posVar),
sqrtvarH : (int16_t)(100*hgtVar),
sqrtvarM : (int16_t)(100*tempVar),
sqrtvarVT : (int16_t)(100*tasVar),
tiltErr : sqrtf(MAX(tiltErrorVariance,0.0f)), // estimated 1-sigma tilt error in radians
offsetNorth : offset.x,
offsetEast : offset.y,
faults : _faultStatus,
timeouts : timeoutStatus,
solution : solutionStatus.value,
gps : gpsStatus.value,
primary : frontend->getPrimaryCoreIndex()
};
AP::logger().WriteBlock(&pkt4, sizeof(pkt4));
}
void NavEKF3_core::Log_Write_XKF5(uint64_t time_us) const
{
if (core_index != frontend->primary) {
// log only primary instance for now
return;
}
const struct log_NKF5 pkt5{
LOG_PACKET_HEADER_INIT(LOG_XKF5_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
normInnov : (uint8_t)(MIN(100*MAX(flowTestRatio[0],flowTestRatio[1]),255)), // normalised innovation variance ratio for optical flow observations fused by the main nav filter
FIX : (int16_t)(1000*innovOptFlow[0]), // optical flow LOS rate vector innovations from the main nav filter
FIY : (int16_t)(1000*innovOptFlow[1]), // optical flow LOS rate vector innovations from the main nav filter
AFI : (int16_t)(1000*norm(auxFlowObsInnov.x,auxFlowObsInnov.y)), // optical flow LOS rate innovation from terrain offset estimator
HAGL : (int16_t)(100*(terrainState - stateStruct.position.z)), // height above ground level
offset : (int16_t)(100*terrainState), // filter ground offset state error
RI : (int16_t)(100*innovRng), // range finder innovations
meaRng : (uint16_t)(100*rangeDataDelayed.rng), // measured range
errHAGL : (uint16_t)(100*sqrtf(Popt)), // note Popt is constrained to be non-negative in EstimateTerrainOffset()
angErr : (float)outputTrackError.x, // output predictor angle error
velErr : (float)outputTrackError.y, // output predictor velocity error
posErr : (float)outputTrackError.z // output predictor position tracking error
};
AP::logger().WriteBlock(&pkt5, sizeof(pkt5));
}
void NavEKF3_core::Log_Write_Quaternion(uint64_t time_us) const
{
// log quaternion
Quaternion quat;
getQuaternion( quat);
const struct log_XKQ pktq1{
LOG_PACKET_HEADER_INIT(LOG_XKQ_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
q1 : quat.q1,
q2 : quat.q2,
q3 : quat.q3,
q4 : quat.q4
};
AP::logger().WriteBlock(&pktq1, sizeof(pktq1));
}
// logs beacon information, one beacon per call
void NavEKF3_core::Log_Write_Beacon(uint64_t time_us)
{
if (core_index != frontend->primary) {
// log only primary instance for now
return;
}
if (!statesInitialised || N_beacons == 0 || rngBcnFusionReport == nullptr) {
return;
}
// Ensure that beacons are not skipped due to calling this function at a rate lower than the updates
if (rngBcnFuseDataReportIndex >= N_beacons) {
rngBcnFuseDataReportIndex = 0;
}
const rngBcnFusionReport_t &report = rngBcnFusionReport[rngBcnFuseDataReportIndex];
// write range beacon fusion debug packet if the range value is non-zero
if (report.rng <= 0.0f) {
rngBcnFuseDataReportIndex++;
return;
}
const struct log_XKF0 pkt10{
LOG_PACKET_HEADER_INIT(LOG_XKF0_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
ID : rngBcnFuseDataReportIndex,
rng : (int16_t)(100*report.rng),
innov : (int16_t)(100*report.innov),
sqrtInnovVar : (uint16_t)(100*sqrtf(report.innovVar)),
testRatio : (uint16_t)(100*constrain_float(report.testRatio,0.0f,650.0f)),
beaconPosN : (int16_t)(100*report.beaconPosNED.x),
beaconPosE : (int16_t)(100*report.beaconPosNED.y),
beaconPosD : (int16_t)(100*report.beaconPosNED.z),
offsetHigh : (int16_t)(100*bcnPosDownOffsetMax),
offsetLow : (int16_t)(100*bcnPosDownOffsetMin),
posN : (int16_t)(100*receiverPos.x),
posE : (int16_t)(100*receiverPos.y),
posD : (int16_t)(100*receiverPos.z)
};
AP::logger().WriteBlock(&pkt10, sizeof(pkt10));
rngBcnFuseDataReportIndex++;
}
void NavEKF3_core::Log_Write_BodyOdom(uint64_t time_us)
{
if (core_index != frontend->primary) {
// log only primary instance for now
return;
}
Vector3f velBodyInnov,velBodyInnovVar;
static uint32_t lastUpdateTime_ms = 0;
uint32_t updateTime_ms = getBodyFrameOdomDebug( velBodyInnov, velBodyInnovVar);
if (updateTime_ms > lastUpdateTime_ms) {
const struct log_XKFD pkt11{
LOG_PACKET_HEADER_INIT(LOG_XKFD_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
velInnovX : velBodyInnov.x,
velInnovY : velBodyInnov.y,
velInnovZ : velBodyInnov.z,
velInnovVarX : velBodyInnovVar.x,
velInnovVarY : velBodyInnovVar.y,
velInnovVarZ : velBodyInnovVar.z
};
AP::logger().WriteBlock(&pkt11, sizeof(pkt11));
lastUpdateTime_ms = updateTime_ms;
}
}
void NavEKF3_core::Log_Write_State_Variances(uint64_t time_us) const
{
if (core_index != frontend->primary) {
// log only primary instance for now
return;
}
static uint32_t lastEkfStateVarLogTime_ms = 0;
if (AP::dal().millis() - lastEkfStateVarLogTime_ms > 490) {
lastEkfStateVarLogTime_ms = AP::dal().millis();
const struct log_XKV pktv1{
LOG_PACKET_HEADER_INIT(LOG_XKV1_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
v00 : P[0][0],
v01 : P[1][1],
v02 : P[2][2],
v03 : P[3][3],
v04 : P[4][4],
v05 : P[5][5],
v06 : P[6][6],
v07 : P[7][7],
v08 : P[8][8],
v09 : P[9][9],
v10 : P[10][10],
v11 : P[11][11]
};
AP::logger().WriteBlock(&pktv1, sizeof(pktv1));
const struct log_XKV pktv2{
LOG_PACKET_HEADER_INIT(LOG_XKV2_MSG),
time_us : time_us,
core : DAL_CORE(core_index),
v00 : P[12][12],
v01 : P[13][13],
v02 : P[14][14],
v03 : P[15][15],
v04 : P[16][16],
v05 : P[17][17],
v06 : P[18][18],
v07 : P[19][19],
v08 : P[20][20],
v09 : P[21][21],
v10 : P[22][22],
v11 : P[23][23]
};
AP::logger().WriteBlock(&pktv2, sizeof(pktv2));
}
}
void NavEKF3::Log_Write()
{
// only log if enabled
if (activeCores() <= 0) {
return;
}
if (lastLogWrite_us == imuSampleTime_us) {
// vehicle is doubling up on logging
return;
}
lastLogWrite_us = imuSampleTime_us;
uint64_t time_us = AP::dal().micros64();
for (uint8_t i=0; i<activeCores(); i++) {
core[i].Log_Write(time_us);
}
AP::dal().start_frame(AP_DAL::FrameType::LogWriteEKF3);
}
void NavEKF3_core::Log_Write(uint64_t time_us)
{
// note that several of these functions exit-early if they're not
// attempting to log the primary core.
Log_Write_XKF1(time_us);
Log_Write_XKF2(time_us);
Log_Write_XKF3(time_us);
Log_Write_XKF4(time_us);
Log_Write_XKF5(time_us);
Log_Write_XKFS(time_us);
Log_Write_Quaternion(time_us);
Log_Write_GSF(time_us);
// write range beacon fusion debug packet if the range value is non-zero
Log_Write_Beacon(time_us);
#if EK3_FEATURE_BODY_ODOM
// write debug data for body frame odometry fusion
Log_Write_BodyOdom(time_us);
#endif
// log state variances every 0.49s
Log_Write_State_Variances(time_us);
Log_Write_Timing(time_us);
}
void NavEKF3_core::Log_Write_Timing(uint64_t time_us)
{
// log EKF timing statistics every 5s
static uint32_t lastTimingLogTime_ms = 0;
if (AP::dal().millis() - lastTimingLogTime_ms <= 5000) {
return;
}
lastTimingLogTime_ms = AP::dal().millis();
const struct log_XKT xkt{
LOG_PACKET_HEADER_INIT(LOG_XKT_MSG),
time_us : time_us,
core : core_index,
timing_count : timing.count,
dtIMUavg_min : timing.dtIMUavg_min,
dtIMUavg_max : timing.dtIMUavg_max,
dtEKFavg_min : timing.dtEKFavg_min,
dtEKFavg_max : timing.dtEKFavg_max,
delAngDT_min : timing.delAngDT_min,
delAngDT_max : timing.delAngDT_max,
delVelDT_min : timing.delVelDT_min,
delVelDT_max : timing.delVelDT_max,
};
memset(&timing, 0, sizeof(timing));
AP::logger().WriteBlock(&xkt, sizeof(xkt));
}
void NavEKF3_core::Log_Write_GSF(uint64_t time_us)
{
if (yawEstimator == nullptr) {
return;
}
yawEstimator->Log_Write(time_us, LOG_XKY0_MSG, LOG_XKY1_MSG, DAL_CORE(core_index));
}