This commit changes the way libraries headers are included in source files: - If the header is in the same directory the source belongs to, so the notation '#include ""' is used with the path relative to the directory containing the source. - If the header is outside the directory containing the source, then we use the notation '#include <>' with the path relative to libraries folder. Some of the advantages of such approach: - Only one search path for libraries headers. - OSs like Windows may have a better lookup time.
126 lines
3.3 KiB
C++
126 lines
3.3 KiB
C++
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#if (CONFIG_HAL_BOARD == HAL_BOARD_APM1 || CONFIG_HAL_BOARD == HAL_BOARD_APM2)
|
|
|
|
#include <avr/io.h>
|
|
#include <avr/interrupt.h>
|
|
|
|
#include <AP_HAL/AP_HAL.h>
|
|
#include "AnalogIn.h"
|
|
using namespace AP_HAL_AVR;
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
/* CHANNEL_READ_REPEAT: how many reads on a channel before using the value.
|
|
* This seems to be determined empirically */
|
|
#define CHANNEL_READ_REPEAT 2
|
|
|
|
AVRAnalogIn::AVRAnalogIn() :
|
|
_vcc(ADCSource(ANALOG_INPUT_BOARD_VCC))
|
|
{}
|
|
|
|
void AVRAnalogIn::init(void* machtnichts)
|
|
{
|
|
/* Register AVRAnalogIn::_timer_event with the scheduler. */
|
|
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AVRAnalogIn::_timer_event, void));
|
|
/* Register each private channel with AVRAnalogIn. */
|
|
_register_channel(&_vcc);
|
|
}
|
|
|
|
ADCSource* AVRAnalogIn::_create_channel(int16_t chnum) {
|
|
ADCSource *ch = new ADCSource(chnum);
|
|
_register_channel(ch);
|
|
return ch;
|
|
}
|
|
|
|
void AVRAnalogIn::_register_channel(ADCSource* ch) {
|
|
if (_num_channels >= AVR_INPUT_MAX_CHANNELS) {
|
|
for(;;) {
|
|
hal.console->print_P(PSTR(
|
|
"Error: AP_HAL_AVR::AVRAnalogIn out of channels\r\n"));
|
|
hal.scheduler->delay(1000);
|
|
}
|
|
}
|
|
_channels[_num_channels] = ch;
|
|
/* Need to lock to increment _num_channels as it is used
|
|
* by the interrupt to access _channels */
|
|
uint8_t sreg = SREG;
|
|
cli();
|
|
_num_channels++;
|
|
SREG = sreg;
|
|
|
|
if (_num_channels == 1) {
|
|
/* After registering the first channel, we can enable the ADC */
|
|
PRR0 &= ~_BV(PRADC);
|
|
ADCSRA |= _BV(ADEN);
|
|
}
|
|
}
|
|
|
|
void AVRAnalogIn::_timer_event(void)
|
|
{
|
|
if (_channels[_active_channel]->_pin == ANALOG_INPUT_NONE) {
|
|
_channels[_active_channel]->new_sample(0);
|
|
goto next_channel;
|
|
}
|
|
|
|
if (ADCSRA & _BV(ADSC)) {
|
|
/* ADC Conversion is still running - this should not happen, as we
|
|
* are called at 1khz. */
|
|
return;
|
|
}
|
|
|
|
if (_num_channels == 0) {
|
|
/* No channels are registered - nothing to be done. */
|
|
return;
|
|
}
|
|
|
|
_channel_repeat_count++;
|
|
if (_channel_repeat_count < CHANNEL_READ_REPEAT ||
|
|
!_channels[_active_channel]->reading_settled()) {
|
|
/* Start a new conversion, throw away the current conversion */
|
|
ADCSRA |= _BV(ADSC);
|
|
return;
|
|
}
|
|
|
|
_channel_repeat_count = 0;
|
|
|
|
/* Read the conversion registers. */
|
|
{
|
|
uint8_t low = ADCL;
|
|
uint8_t high = ADCH;
|
|
uint16_t sample = low | (((uint16_t)high) << 8);
|
|
/* Give the active channel a new sample */
|
|
_channels[_active_channel]->new_sample( sample );
|
|
}
|
|
next_channel:
|
|
/* stop the previous channel, if a stop pin is defined */
|
|
_channels[_active_channel]->stop_read();
|
|
/* Move to the next channel */
|
|
_active_channel = (_active_channel + 1) % _num_channels;
|
|
/* Setup the next channel's conversion */
|
|
_channels[_active_channel]->setup_read();
|
|
/* Start conversion */
|
|
ADCSRA |= _BV(ADSC);
|
|
}
|
|
|
|
|
|
AP_HAL::AnalogSource* AVRAnalogIn::channel(int16_t ch)
|
|
{
|
|
if (ch == ANALOG_INPUT_BOARD_VCC) {
|
|
return &_vcc;
|
|
} else {
|
|
return _create_channel(ch);
|
|
}
|
|
}
|
|
|
|
/*
|
|
return board voltage in volts
|
|
*/
|
|
float AVRAnalogIn::board_voltage(void)
|
|
{
|
|
return _vcc.voltage_latest();
|
|
}
|
|
|
|
#endif
|