Ardupilot2/libraries/AP_Scripting/examples/Aerobatics/Trajectory/plane_aerobatics.lua
2022-10-02 16:58:37 +11:00

928 lines
32 KiB
Lua

--[[ perform simple aerobatic manoeuvres in AUTO mode
cmd = 1: axial rolls, arg1 = roll rate dps, arg2 = number of rolls
cmd = 2: loops or 180deg return, arg1 = pitch rate dps, arg2 = number of loops, if zero do a 1/2 cuban8-like return
cmd = 3: rolling circle, arg1 = radius, arg2 = number of rolls
cmd = 4: knife edge at any angle, arg1 = roll angle to hold, arg2 = duration
cmd = 5: pause, holding heading and alt to allow stabilization after a move, arg1 = duration in seconds
]]--
-- setup param block for aerobatics, reserving 30 params beginning with AERO_
local PARAM_TABLE_KEY = 70
local PARAM_TABLE_PREFIX = 'AEROM_'
assert(param:add_table(PARAM_TABLE_KEY, "AEROM_", 30), 'could not add param table')
-- this control script uses AERO_TRICK_ID to report the selected trick number from the scripting_rc_selection rc channel
assert(param:add_param(PARAM_TABLE_KEY, 1, 'HGT_P', 1), 'could not add param4') -- height P gain
assert(param:add_param(PARAM_TABLE_KEY, 2, 'HGT_I', 2), 'could not add param5') -- height I gain
assert(param:add_param(PARAM_TABLE_KEY, 3, 'HGT_KE_ADD', 20), 'could not add param6') --height knife-edge addition for pitch
assert(param:add_param(PARAM_TABLE_KEY, 4, 'THR_PIT_FF', 80), 'could not add param67') --throttle FF from pitch
assert(param:add_param(PARAM_TABLE_KEY, 5, 'SPD_P', 5), 'could not add param8') -- speed P gain
assert(param:add_param(PARAM_TABLE_KEY, 6, 'SPD_I', 25), 'could not add param9') -- speed I gain
function bind_param(name)
local p = Parameter()
assert(p:init(name), string.format('could not find %s parameter', name))
return p
end
function bind_add_param(name, idx, default_value)
assert(param:add_param(PARAM_TABLE_KEY, idx, name, default_value), string.format('could not add param %s', name))
return bind_param(PARAM_TABLE_PREFIX .. name)
end
local ERR_CORR_TC = bind_add_param('ERR_COR_TC', 7, 3)
local ROLL_CORR_TC = bind_add_param('ROL_COR_TC', 8, 1)
--local VEL_TC = bind_add_param('VEL_TC', 8, 3)
local LOOP_RATE = 20
DO_JUMP = 177
k_throttle = 70
local HGT_P = bind_param("AEROM_HGT_P") -- height P gain
local HGT_I = bind_param("AEROM_HGT_I") -- height I gain
local HGT_KE_BIAS = bind_param("AEROM_HGT_KE_ADD") -- height knifeedge addition for pitch
local THR_PIT_FF = bind_param("AEROM_THR_PIT_FF") -- throttle FF from pitch
local SPD_P = bind_param("AEROM_SPD_P") -- speed P gain
local SPD_I = bind_param("AEROM_SPD_I") -- speed I gain
local TRIM_THROTTLE = bind_param("TRIM_THROTTLE")
local TRIM_ARSPD_CM = bind_param("TRIM_ARSPD_CM")
local RLL2SRV_TCONST = bind_param("RLL2SRV_TCONST")
local PITCH_TCONST = bind_param("PTCH2SRV_TCONST")
local last_roll_err = 0.0
local last_id = 0
local initial_yaw_deg = 0
local wp_yaw_deg = 0
local initial_height = 0
local repeat_count = 0
local running = false
local roll_stage = 0
local MIN_SPEED = 0.1
local LOOKAHEAD = 1
local arg3 = 0
local arg4 = 0
-- constrain a value between limits
function constrain(v, vmin, vmax)
if v < vmin then
v = vmin
end
if v > vmax then
v = vmax
end
return v
end
-- roll angle error 180 wrap to cope with errors while in inverted segments
function roll_angle_error_wrap(roll_angle_error)
if math.abs(roll_angle_error) > 180 then
if roll_angle_error > 0 then
roll_angle_error = roll_angle_error - 360
else
roll_angle_error= roll_angle_error +360
end
end
return roll_angle_error
end
--roll controller to keep wings level in earth frame. if arg is 0 then level is at only 0 deg, otherwise its at 180/-180 roll also for loops
function earth_frame_wings_level(arg)
local roll_deg = math.deg(ahrs:get_roll())
local roll_angle_error = 0.0
if (roll_deg > 90 or roll_deg < -90) and arg ~= 0 then
roll_angle_error = 180 - roll_deg
else
roll_angle_error = - roll_deg
end
return roll_angle_error_wrap(roll_angle_error)/(RLL2SRV_TCONST:get())
end
function wrap_360(angle)
local res = math.fmod(angle, 360.0)
if res < 0 then
res = res + 360.0
end
return res
end
function wrap_180(angle)
local res = wrap_360(angle)
if res > 180 then
res = res - 360
end
return res
end
function wrap_pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_180(angle_deg)
return math.rad(angle_wrapped)
end
function wrap_2pi(angle)
local angle_deg = math.deg(angle)
local angle_wrapped = wrap_360(angle_deg)
return math.rad(angle_wrapped)
end
function euler_rad_ef_to_bf(roll, pitch, yaw, ef_roll_rate, ef_pitch_rate, ef_yaw_rate)
local sr = math.sin(roll)
local cr = math.cos(roll)
local sp = math.sin(pitch)
local cp = math.cos(pitch)
local sy = math.sin(yaw)
local cy = math.cos(yaw)
local bf_roll_rate = ef_roll_rate + -sp*ef_yaw_rate
local bf_pitch_rate = cr*ef_pitch_rate + sr*cp*ef_yaw_rate
local bf_yaw_rate = -sr*ef_pitch_rate + cr*cp*ef_yaw_rate
return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate)
end
-- a PI controller implemented as a Lua object
local function PI_controller(kP,kI,iMax)
-- the new instance. You can put public variables inside this self
-- declaration if you want to
local self = {}
-- private fields as locals
local _kP = kP or 0.0
local _kI = kI or 0.0
local _kD = kD or 0.0
local _iMax = iMax
local _last_t = nil
local _I = 0
local _P = 0
local _total = 0
local _counter = 0
local _target = 0
local _current = 0
-- update the controller.
function self.update(target, current)
local now = millis():tofloat() * 0.001
if not _last_t then
_last_t = now
end
local dt = now - _last_t
_last_t = now
local err = target - current
_counter = _counter + 1
local P = _kP * err
_I = _I + _kI * err * dt
if _iMax then
_I = constrain(_I, -_iMax, iMax)
end
local I = _I
local ret = P + I
_target = target
_current = current
_P = P
_total = ret
return ret
end
-- reset integrator to an initial value
function self.reset(integrator)
_I = integrator
end
function self.set_I(I)
_kI = I
end
function self.set_P(P)
_kP = P
end
function self.set_Imax(Imax)
_iMax = Imax
end
-- log the controller internals
function self.log(name, add_total)
-- allow for an external addition to total
logger.write(name,'Targ,Curr,P,I,Total,Add','ffffff',_target,_current,_P,_I,_total,add_total)
end
-- return the instance
return self
end
local function speed_controller(kP_param,kI_param, kFF_roll_param, kFF_pitch_param, Imax)
local self = {}
local kFF_roll = kFF_roll_param
local kFF_pitch = kFF_pitch_param
local PI = PI_controller(kP_param:get(), kI_param:get(), Imax)
function self.update(target)
local current_speed = ahrs:get_velocity_NED():length()
local throttle = PI.update(target, current_speed)
throttle = throttle + math.sin(ahrs:get_pitch())*kFF_pitch:get()
throttle = throttle + math.abs(math.sin(ahrs:get_roll()))*kFF_roll:get()
return throttle
end
function self.reset()
PI.reset(0)
local temp_throttle = self.update(ahrs:get_velocity_NED():length())
local current_throttle = SRV_Channels:get_output_scaled(k_throttle)
PI.reset(current_throttle-temp_throttle)
end
return self
end
local function height_controller(kP_param,kI_param,KnifeEdge_param,Imax)
local self = {}
local kP = kP_param
local kI = kI_param
local KnifeEdge = KnifeEdge_param
local PI = PI_controller(kP:get(), kI:get(), Imax)
function self.update(target)
local target_pitch = PI.update(target, ahrs:get_position():alt()*0.01)
local roll_rad = ahrs:get_roll()
local ke_add = math.abs(math.sin(roll_rad)) * KnifeEdge:get()
target_pitch = target_pitch + ke_add
PI.log("HPI", ke_add)
return target_pitch
end
function self.reset()
PI.reset(math.max(math.deg(ahrs:get_pitch()), 3.0))
PI.set_P(kP:get())
PI.set_I(kI:get())
end
return self
end
local height_PI = height_controller(HGT_P, HGT_I, HGT_KE_BIAS, 20.0)
local speed_PI = speed_controller(SPD_P, SPD_I, HGT_KE_BIAS, THR_PIT_FF, 100.0)
function euler_rate_ef_to_bf(rrate, prate, yrate, roll, pitch, yaw)
local sr = math.sin(roll)
local cr = math.cos(roll)
local sp = math.sin(pitch)
local cp = math.cos(pitch)
local sy = math.sin(yaw)
local cy = math.cos(yaw)
local bf_roll_rate = rrate -sp*yrate
local bf_pitch_rate = cr*prate + sr*cp*yrate
local bf_yaw_rate = -sr*prate + cr*cp*yrate
return makeVector3f(bf_roll_rate, bf_pitch_rate, bf_yaw_rate)
end
-- a controller to target a zero pitch angle and zero heading change, used in a roll
-- output is a body frame pitch rate, with convergence over time tconst in seconds
function pitch_controller(target_pitch_deg, target_yaw_deg, tconst)
local roll_deg = math.deg(ahrs:get_roll())
local pitch_deg = math.deg(ahrs:get_pitch())
local yaw_deg = math.deg(ahrs:get_yaw())
-- get earth frame pitch and yaw rates
local ef_pitch_rate = (target_pitch_deg - pitch_deg) / tconst
local ef_yaw_rate = wrap_180(target_yaw_deg - yaw_deg) / tconst
local bf_pitch_rate = math.sin(math.rad(roll_deg)) * ef_yaw_rate + math.cos(math.rad(roll_deg)) * ef_pitch_rate
local bf_yaw_rate = math.cos(math.rad(roll_deg)) * ef_yaw_rate - math.sin(math.rad(roll_deg)) * ef_pitch_rate
return bf_pitch_rate, bf_yaw_rate
end
-- a controller for throttle to account for pitch
function throttle_controller()
local pitch_rad = ahrs:get_pitch()
local thr_ff = THR_PIT_FF:get()
local throttle = TRIM_THROTTLE:get() + math.sin(pitch_rad) * thr_ff
return constrain(throttle, 0, 100.0)
end
-- recover entry altitude
function recover_alt()
local target_pitch = height_PI.update(initial_height)
local pitch_rate, yaw_rate = pitch_controller(target_pitch, wp_yaw_deg, PITCH_TCONST:get())
return target_pitch, pitch_rate, yaw_rate
end
function get_wp_location(i)
local m = mission:get_item(i)
local loc = Location()
loc:lat(m:x())
loc:lng(m:y())
loc:relative_alt(false)
loc:terrain_alt(false)
loc:origin_alt(false)
loc:alt(math.floor(m:z()*100))
return loc
end
function resolve_jump(i)
local m = mission:get_item(i)
while m:command() == DO_JUMP do
i = math.floor(m:param1())
m = mission:get_item(i)
end
return i
end
--------Trajectory definitions---------------------
function path_circle(t, radius, unused)
t = t*math.pi*2
local vec = makeVector3f(math.sin(t), 1.0-math.cos(t), 0)
return vec:scale(radius), 0.0
end
function knife_edge_circle(t, radius, unused)
t = t*math.pi*2
local vec = makeVector3f(math.sin(t), 1.0-math.cos(t), 0)
return vec:scale(radius), math.pi/2
end
function path_climbing_circle(t, radius, height)
local angle = t*math.pi*2
local vec = makeVector3f(radius*math.sin(angle), radius*(1.0-math.cos(angle)), -math.sin(0.5*angle)*height)
return vec, 0.0
end
--TODO: fix this to have initial tangent 0
function path_figure_eight(t, radius)
t = t*math.pi*2
local vec = makeVector3f(math.sin(t), math.sin(t)*math.cos(t), 0)
return vec:scale(radius), 0.0
end
function path_vertical_circle(t, radius, unused)
t = t*math.pi*2
local vec = makeVector3f(math.sin(t), 0.0, -1.0 + math.cos(t))
return vec:scale(radius), 0.0
end
function path_straight_roll(t, length, num_rolls)
local vec = makeVector3f(t*length, 0.0, 0.0)
return vec, t*num_rolls*2*math.pi
end
function path_rolling_circle(t, radius, num_rolls)
--t = t*math.pi*2
local vec = Vector3f()
if radius < 0.0 then
vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0)
else
vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0)
end
return vec:scale(math.abs(radius)), t*num_rolls*2*math.pi
end
function path_banked_circle(t, radius, bank_angle)
--t = t*math.pi*2
local vec = Vector3f()
if radius < 0.0 then
vec = makeVector3f(math.sin(2*math.pi*t), -1.0+math.cos(2*math.pi*t), 0)
else
vec = makeVector3f(math.sin(2*math.pi*t), 1.0-math.cos(2*math.pi*t), 0)
end
return vec:scale(math.abs(radius)), math.deg(bank_angle)
end
function test_height_control(t, length, unused)
if t < 0.25 then
return makeVector3f(t*length, 0.0, 0.0), 0.0
elseif t < 0.5 then
return makeVector3f(t*length, 0.0, -10.0), 0.0
elseif t < 0.75 then
return makeVector3f(t*length, 0.0, -20.0), 0.0
else
return makeVector3f(t*length, 0.0, -30.0), 0.0
end
end
function test_lane_change(t, length, unused)
if t < 0.25 then
return makeVector3f(t*length, 0.0, 0.0), 0.0
elseif t < 0.5 then
return makeVector3f(t*length, 10.0, 0.0), 0.0
elseif t < 0.75 then
return makeVector3f(t*length, 20.0, 0.0), 0.0
else
return makeVector3f(t*length, 30.0, 0.0), 0.0
end
end
function path_straight_roll(t, length, num_rolls)
local vec = makeVector3f(t*length, 0.0, 0.0)
return vec, t*num_rolls*2*math.pi
end
--todo: change y coordinate to z for vertical box
--function aerobatic_box(t, l, w, r):
function horizontal_aerobatic_box(t, arg1, arg2)
local r = math.abs(arg3)
if(arg3 <= 0.0) then
gcs:send_text(0, string.format("Invalid radius value of : %f, using default.", arg3))
r = math.min(arg1, arg2)/3.0
end
local l = arg1 - 2*r
local w = arg2 - 2*r
local perim = 2*l + 2*w + 2*math.pi*r
local pos
if (t < 0.5*l/(perim)) then
pos = makeVector3f(perim*t, 0.0, 0.0)
elseif (t < (0.5*l + 0.5*math.pi*r)/perim) then
pos = makeVector3f(0.5*l + r*math.sin((perim*t - 0.5*l)/r), r*(1 - math.cos((perim*t - 0.5*l)/r)), 0.0)
elseif (t < (0.5*l + 0.5*math.pi*r + w)/perim) then
pos = makeVector3f(0.5*l + r, r + (perim*t - (0.5*l + 0.5*math.pi*r)), 0.0)
elseif(t < (0.5*l + math.pi*r + w)/perim) then
pos = makeVector3f(0.5*l + r + r*(-1 + math.cos((perim*t - (0.5*l + 0.5*math.pi*r + w))/r)), r + w + r*(math.sin((perim*t - (0.5*l + 0.5*math.pi*r + w))/r)), 0.0)
elseif(t < (1.5*l + math.pi*r + w)/perim) then
pos = makeVector3f(0.5*l - (perim*t - (0.5*l + math.pi*r + w)), 2*r + w, 0.0)
elseif(t < (1.5*l + 1.5*math.pi*r + w)/perim) then
pos = makeVector3f(-0.5*l + r*(-math.sin((perim*t - (1.5*l + math.pi*r + w))/r)), 2*r + w + r*(-1 + math.cos((perim*t - (1.5*l + math.pi*r + w))/r)), 0.0)
elseif(t < (1.5*l + 1.5*math.pi*r + 2*w)/perim) then
pos = makeVector3f(-0.5*l -r, w + r - (perim*t - (1.5*l + 1.5*math.pi*r + w)), 0.0)
elseif(t < (1.5*l + 2*math.pi*r + 2*w)/perim) then
pos = makeVector3f(-0.5*l -r + r*(1 - math.cos((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r)), r + r*(-math.sin((perim*t - (1.5*l + 1.5*math.pi*r + 2*w))/r)), 0.0)
else
pos = makeVector3f(-0.5*l + perim*t - (1.5*l + 2*math.pi*r + 2*w), 0.0, 0.0)
end
return pos, 0.0
end
function vertical_aerobatic_box(t, arg1, arg2)
--gcs:send_text(0, string.format("t val: %f", t))
local q = Quaternion()
q:from_euler(-math.rad(90), 0, 0)
local point, angle = horizontal_aerobatic_box(t, arg1, arg2)
q:earth_to_body(point)
return point, angle
end
---------------------------------------------------
function target_groundspeed()
return ahrs:get_EAS2TAS()*TRIM_ARSPD_CM:get()*0.01
end
--Estimate the length of the path in metres
function path_length(path_f, arg1, arg2)
local dt = 0.01
local total = 0.0
for i = 0, math.floor(1.0/dt) do
local t = i*dt
local t2 = t + dt
local v1 = path_f(t, arg1, arg2)
local v2 = path_f(t2, arg1, arg2)
local dv = v2-v1
total = total + dv:length()
end
return total
end
--args:
-- path_f: path function returning position
-- t: normalised [0, 1] time
-- arg1, arg2: arguments for path function
-- orientation: maneuver frame orientation
--returns: requested position in maneuver frame
function rotate_path(path_f, t, arg1, arg2, orientation, offset)
point, angle = path_f(t, arg1, arg2)
orientation:earth_to_body(point)
--TODO: rotate angle?
return point+offset, angle
end
--args:
-- dt: sample time
-- cutoff_freq: cutoff frequency for low pass filter, in Hz
--returns: alpha value required to implement LP filter
function calc_lowpass_alpha_dt(dt, cutoff_freq)
if dt <= 0.0 or cutoff_freq <= 0.0 then
return 1.0
end
local rc = 1.0/(2.0*3.14159265*cutoff_freq)
local drc = dt/(dt+rc)
if drc < 0.0 then
return 0.0
end
if drc > 1.0 then
return 1.0
end
return drc
end
--Wrapper to construct a Vector3f{x, y, z} from (x, y, z)
function makeVector3f(x, y, z)
local vec = Vector3f()
vec:x(x)
vec:y(y)
vec:z(z)
return vec
end
--Given vec1, vec2, returns an (rotation axis, angle) tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
--Note that the rotation will not be unique.
function vectors_to_rotation(vector1, vector2)
axis = vector1:cross(vector2)
if axis:length() < 0.00001 then
local vec = Vector3f()
vec:x(1)
return vec, 0
end
axis:normalize()
angle = vector1:angle(vector2)
return axis, angle
end
--returns Quaternion
function vectors_to_rotation_w_roll(vector1, vector2, roll)
axis, angle = vectors_to_rotation(vector1, vector2)
local vector_rotation = Quaternion()
vector_rotation:from_axis_angle(axis, angle)
local roll_rotation = Quaternion()
roll_rotation:from_euler(roll, 0, 0)
local total_rot = vector_rotation*roll_rotation
return to_axis_and_angle(total_rot)
end
--Given vec1, vec2, returns an angular velocity tuple that rotates vec1 to be parallel to vec2
--If vec1 and vec2 are already parallel, returns a zero vector and zero angle
function vectors_to_angular_rate(vector1, vector2, time_constant)
axis, angle = vectors_to_rotation(vector1, vector2)
angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
function vectors_to_angular_rate_w_roll(vector1, vector2, time_constant, roll)
axis, angle = vectors_to_rotation_w_roll(vector1, vector2, roll)
angular_velocity = angle/time_constant
return axis:scale(angular_velocity)
end
function to_axis_and_angle(quat)
local axis_angle = Vector3f()
quat:to_axis_angle(axis_angle)
angle = axis_angle:length()
if(angle < 0.00001) then
return makeVector3f(1.0, 0.0, 0.0), 0.0
end
return axis_angle:scale(1.0/angle), angle
end
function test_axis_and_angle()
local quat = Quaternion()
quat:q1(1.0)
local axis, angle = to_axis_and_angle(quat)
gcs:send_text(0, string.format("axis angle test: %f %f %f %f", axis:x(), axis:y(), axis:z(), angle))
local quat2 = Quaternion()
quat2:q1(math.cos(math.pi/4))
quat2:q2(0)
quat2:q3(0)
quat2:q4(math.sin(math.pi/4))
local axis2, angle2 = to_axis_and_angle(quat2)
gcs:send_text(0, string.format("axis angle test2: %f %f %f %f", axis2:x(), axis2:y(), axis2:z(), angle2))
local quat3 = Quaternion()
quat3:q1(math.cos(math.pi/2))
quat3:q2(0)
quat3:q3(math.sin(math.pi/2))
quat3:q4(0)
local axis3, angle3 = to_axis_and_angle(quat3)
gcs:send_text(0, string.format("axis angle test3: %f %f %f %f", axis3:x(), axis3:y(), axis3:z(), angle3))
end
--Just used this to test the above function, can probably delete now.
function test_angular_rate()
local vector1 = makeVector3f(1.0, 0.0, 0.0)
local vector2 = makeVector3f(1.0, 1.0, 0.0)
local angular_rate = vectors_to_angular_rate(vector1, vector2, 1.0)
gcs:send_text(0, string.format("angular rate: %.1f %.1f %.1f", math.deg(angular_rate:x()), math.deg(angular_rate:y()), math.deg(angular_rate:z())))
end
--test_angular_rate()
--test_axis_and_angle()
-- function maneuver_to_body(vec)
-- path_var.initial_maneuver_to_earth:earth_to_body(vec)
-- vec = ahrs:earth_to_body(vec)
-- return vec
-- end
--returns body frame angular rate as Vec3f
-- function path_proportional_error_correction(current_pos_ef, target_pos_ef, forward_velocity, target_velocity_ef)
-- if forward_velocity <= MIN_SPEED then
-- return makeVector3f(0.0, 0.0, 0.0)
-- end
-- --time over which to correct position error
-- local time_const_pos_to_vel = POS_TC:get()
-- --time over which to achieve desired velocity
-- local time_const_vel_to_acc = VEL_TC:get()
-- local pos_err_ef = target_pos_ef - current_pos_ef
-- local correction_vel_ef = pos_err_ef:scale(1.0/time_const_pos_to_vel)
-- correction_vel_ef = correction_vel_ef:scale(forward_velocity)
-- local curr_vel_ef = ahrs:get_velocity_NED()
-- local vel_error_ef = correction_vel_ef - curr_vel_ef
-- local acc_err_bf = ahrs:earth_to_body(vel_error_ef):scale(1.0/time_const_vel_to_acc)
-- local ang_vel = makeVector3f(0, -acc_err_bf:z()/forward_velocity, acc_err_bf:y()/forward_velocity)
-- return ang_vel
-- end
local path_var = {}
path_var.count = 0
path_var.positions_ef = {}
path_var.roll_angles_bf = {}
path_var.initial_ori = Quaternion()
path_var.initial_maneuver_to_earth = Quaternion()
function do_path(path, initial_yaw_deg, arg1, arg2)
local now = millis():tofloat() * 0.001
path_var.count = path_var.count + 1
local target_dt = 1.0/LOOP_RATE
if not running then
running = true
path_var.length = path_length(path, arg1, arg2)
path_var.total_rate_rads_ef = makeVector3f(0.0, 0.0, 0.0)
local speed = target_groundspeed()
--assuming constant velocity
path_var.total_time = path_var.length/speed
path_var.last_pos, last_angle = path(0.0, arg1, arg2) --position at t0
--deliberately only want yaw component, because the maneuver should be performed relative to the earth, not relative to the initial orientation
path_var.initial_ori:from_euler(0, 0, math.rad(initial_yaw_deg))
path_var.initial_maneuver_to_earth:from_euler(0, 0, -math.rad(initial_yaw_deg))
path_var.initial_ef_pos = ahrs:get_relative_position_NED_origin()
local corrected_position_t0_ef, angle_t0 = rotate_path(path, LOOKAHEAD*target_dt/path_var.total_time, arg1, arg2, path_var.initial_ori, path_var.initial_ef_pos)
local corrected_position_t1_ef, angle_t1 = rotate_path(path, 2*LOOKAHEAD*target_dt/path_var.total_time, arg1, arg2, path_var.initial_ori, path_var.initial_ef_pos)
path_var.start_pos = ahrs:get_position()
path_var.path_int = path_var.start_pos:copy()
height_PI.reset()
speed_PI.reset()
--path_var.positions[-1] is not used in initial runthrough
path_var.positions_ef[0] = corrected_position_t0_ef
path_var.positions_ef[1] = corrected_position_t1_ef
path_var.roll_angles_bf[0] = angle_t0
path_var.roll_angles_bf[1] = angle_t1
path_var.accumulated_orientation_rel_ef = path_var.initial_ori
path_var.time_correction = 0.0
path_var.filtered_angular_velocity = Vector3f()
path_var.start_time = now + target_dt
path_var.last_time = now
path_var.average_dt = target_dt
path_var.scaled_dt = target_dt
path_var.path_t = 0
path_var.target_speed = speed
end
--TODO: dt taken from actual loop rate or just desired loop rate?
--local dt = now - path_var.last_time
--local dt = target_dt
local vel_length = ahrs:get_velocity_NED():length()
local actual_dt = now - path_var.last_time
path_var.average_dt = 0.98*path_var.average_dt + 0.02*actual_dt
local scaled_dt = path_var.average_dt--*vel_length/path_var.target_speed
path_var.scaled_dt = scaled_dt
path_var.last_time = now
path_var.path_t = path_var.path_t + scaled_dt/path_var.total_time
--TODO: Fix this exit condition
local t = path_var.path_t
if t > 1.0 then --done
return false
end
--where we aim to be on the path at this timestamp
--rotate from maneuver frame to 'local' EF
local next_target_pos_ef, next_target_angle = rotate_path(path, path_var.path_t + LOOKAHEAD*path_var.average_dt/path_var.total_time, arg1, arg2, path_var.initial_ori, path_var.initial_ef_pos)
next_target_pos_ef = next_target_pos_ef
logger.write("TML", 't', 'f', path_var.path_t + LOOKAHEAD*path_var.average_dt/path_var.total_time)
path_var.positions_ef[-1] = path_var.positions_ef[0]:copy()
path_var.positions_ef[0] = path_var.positions_ef[1]:copy()
path_var.positions_ef[1] = next_target_pos_ef:copy()
--roll angle relative to maneuver position without rolling
path_var.roll_angles_bf[-1] = path_var.roll_angles_bf[0]
path_var.roll_angles_bf[0] = path_var.roll_angles_bf[1]
path_var.roll_angles_bf[1] = next_target_angle
local current_measured_pos_ef = ahrs:get_relative_position_NED_origin()
-- local path_error = {}
-- path_error[-1] = (current_measured_pos - path_var.positions[-1]):length()
-- path_error[0] = (current_measured_pos - path_var.positions[0]):length()
-- path_error[1] = (current_measured_pos - path_var.positions[1]):length()
-----------------------------------------------------------------------------------------------------------------------------
--TODO: Get the "time correction" logic working
-- local smallest_error_index = -1
-- for i = 0,1,1
-- do
-- if(path_error[i] < path_error[smallest_error_index]) then
-- smallest_error_index = i
-- end
-- end
-- if(smallest_error_index == 1) then
-- path_var.positions[-1] = path_var.positions[0]
-- path_var.positions[0] = path_var.positions[1]
-- path_var.positions[1] = rotate_path(path, t + 2*dt, arg1, arg2, path_var.initial_ori)
-- end
-- if(smallest_error_index == -1) then
-- path_var.positions[1] = path_var.positions[0]
-- path_var.positions[0] = path_var.positions[-1]
-- path_var.positions[-1] = rotate_path(path, t - 2*dt, arg1, arg2, path_var.initial_ori)
-- end
-- path_var.time_correction = path_var.time_correction + smallest_error_index*target_dt
------------------------------------------------------------------------------------------------------------------------------
local position_error_ef = path_var.positions_ef[0]- current_measured_pos_ef
local path_loc = path_var.start_pos:copy()
path_loc:offset(path_var.positions_ef[0]:x() - path_var.initial_ef_pos:x(), path_var.positions_ef[0]:y() - path_var.initial_ef_pos:y())
path_loc:alt(path_loc:alt() - math.floor(path_var.positions_ef[0]:z()*100))
--logger.write("POSM",'x,y,z','fff',current_measured_pos_ef:x(),current_measured_pos_ef:y(),current_measured_pos_ef:z())
--logger.write("POSE",'x,y,z','fff',path_var.positions_ef[0]:x(),path_var.positions_ef[0]:y(),path_var.positions_ef[0]:z())
logger.write("PERR",'x,y,z,tc,Lat,Lng,Alt','ffffLLf',position_error_ef:x(),position_error_ef:y(),position_error_ef:z(), path_var.time_correction, path_loc:lat(), path_loc:lng(), path_loc:alt()*0.01)
--velocity required to travel along trajectory
local trajectory_velocity_ef = (path_var.positions_ef[1] - path_var.positions_ef[-1]):scale(0.5/path_var.scaled_dt) --derivative from -dt to dt for more accuracy
local tangent1_ef = (path_var.positions_ef[0] - path_var.positions_ef[-1])
local tangent2_ef = (path_var.positions_ef[1] - path_var.positions_ef[0])
local path_rate_rads_ef = vectors_to_angular_rate(tangent1_ef, tangent2_ef, path_var.scaled_dt)
local zero_roll_angle_delta = Quaternion()
zero_roll_angle_delta:from_angular_velocity(path_rate_rads_ef, path_var.scaled_dt)
path_var.accumulated_orientation_rel_ef = zero_roll_angle_delta*path_var.accumulated_orientation_rel_ef
path_var.accumulated_orientation_rel_ef:normalize()
--velocity to correct error
local err_corr_tc = ERR_CORR_TC:get() --tested with 3.0 seconds
local err_velocity_ef = (path_var.positions_ef[0] - current_measured_pos_ef):scale(1.0/err_corr_tc)
local total_velocity_ef = trajectory_velocity_ef + err_velocity_ef
local curr_vel_ef = ahrs:get_velocity_NED()
local total_ang_vel_ef = vectors_to_angular_rate(curr_vel_ef, total_velocity_ef, 1.0)
local total_ang_vel_bf = ahrs:earth_to_body(total_ang_vel_ef)
local mf_axis = makeVector3f(1, 0, 0)
path_var.accumulated_orientation_rel_ef:earth_to_body(mf_axis)
local orientation_rel_mf_with_roll_angle = Quaternion()
orientation_rel_mf_with_roll_angle:from_axis_angle(mf_axis, path_var.roll_angles_bf[0])
orientation_rel_ef_with_roll_angle = orientation_rel_mf_with_roll_angle*path_var.accumulated_orientation_rel_ef
--logger.write("ACCO",'r,p,y', 'fff', orientation_rel_ef_with_roll_angle:get_euler_roll(), orientation_rel_ef_with_roll_angle:get_euler_pitch(), orientation_rel_ef_with_roll_angle:get_euler_yaw())
--logger.write("ACCQ",'q1,q2,q3,q4', 'ffff', orientation_rel_ef_with_roll_angle:q1(),orientation_rel_ef_with_roll_angle:q2(),orientation_rel_ef_with_roll_angle:q3(),orientation_rel_ef_with_roll_angle:q4() )
logger.write("IORI",'r,p,y','fff',ahrs:get_roll(), ahrs:get_pitch(), ahrs:get_yaw())
local roll_error = orientation_rel_ef_with_roll_angle*ahrs:get_quaternion():inverse()
roll_error:normalize()
local err_axis_ef, err_angle = to_axis_and_angle(roll_error)
local time_const_roll = ROLL_CORR_TC:get()
local err_angle_rate_ef = err_axis_ef:scale(err_angle/time_const_roll)
local err_angle_rate_bf = ahrs:earth_to_body(err_angle_rate_ef)
local angular_velocity_bf = total_ang_vel_bf
angular_velocity_bf:x(err_angle_rate_bf:x())
angular_velocity_bf = angular_velocity_bf:scale(math.deg(1))
--logger.write("CAV",'x,y,z','fff',angular_velocity_bf:x(),angular_velocity_bf:y(),angular_velocity_bf:z())
local target_speed = target_groundspeed()--TRIM_ARSPD_CM:get()*0.01
throttle = speed_PI.update(target_speed)
throttle = constrain(throttle, 0, 100.0)
vehicle:set_target_throttle_rate_rpy(throttle, angular_velocity_bf:x(), angular_velocity_bf:y(), angular_velocity_bf:z())
return true
end
command_table = {}
command_table[1]={path_figure_eight, "Figure Eight"}
command_table[2]={path_vertical_circle, "Loop"}
command_table[3]={horizontal_aerobatic_box, "Horizontal Rectangle"}
command_table[4]={path_climbing_circle, "Climbing Circle"}
command_table[5]={vertical_aerobatic_box, "Vertical Box"}
command_table[6]={path_banked_circle, "Banked Circle"}
command_table[7]={path_straight_roll, "Axial Roll"}
command_table[8]={path_rolling_circle, "Rolling Circle"}
command_table[100]={save_parameters,"Reading parameters"}
function save_parameters(arg1, arg2)
arg3 = arg1
arg4 = arg2
end
function update()
id, cmd, arg1, arg2 = vehicle:nav_script_time()
if id then
if id ~= last_id then
-- we've started a new command
running = false
last_id = id
repeat_count = 0
initial_yaw_deg = math.deg(ahrs:get_yaw())
gcs:send_text(0, string.format("Starting %s!", command_table[cmd][2] ))
initial_height = ahrs:get_position():alt()*0.01
-- work out yaw between previous WP and next WP
local cnum = mission:get_current_nav_index()
-- find previous nav waypoint
local loc_prev = get_wp_location(cnum-1)
local loc_next = get_wp_location(cnum+1)
local i= cnum-1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i-1
loc_prev = get_wp_location(i)
end
-- find next nav waypoint
i = cnum+1
while get_wp_location(i):lat() == 0 and get_wp_location(i):lng() == 0 do
i = i+1
loc_next = get_wp_location(resolve_jump(i))
end
wp_yaw_deg = math.deg(loc_prev:get_bearing(loc_next))
initial_yaw_deg = wp_yaw_deg
end
local done = false
if(cmd == 100) then
--parameter node
save_parameters(arg1, arg2)
done = true
else
done = not do_path(command_table[cmd][1], initial_yaw_deg, arg1, arg2)
end
if done then
vehicle:nav_script_time_done(last_id)
gcs:send_text(0, string.format("Finishing %s!", command_table[cmd][2] ))
running = false
end
else
running = false
end
return update, 1000.0/LOOP_RATE
end
return update()