559 lines
15 KiB
Plaintext
559 lines
15 KiB
Plaintext
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
/*****************************************************************************
|
|
The init_ardupilot function processes everything we need for an in - air restart
|
|
We will determine later if we are actually on the ground and process a
|
|
ground start in that case.
|
|
|
|
*****************************************************************************/
|
|
|
|
#if CLI_ENABLED == ENABLED
|
|
|
|
// Functions called from the top-level menu
|
|
#if LITE == DISABLED
|
|
static int8_t process_logs(uint8_t argc, const Menu::arg *argv); // in Log.pde
|
|
#endif
|
|
static int8_t setup_mode(uint8_t argc, const Menu::arg *argv); // in setup.pde
|
|
static int8_t test_mode(uint8_t argc, const Menu::arg *argv); // in test.cpp
|
|
|
|
// This is the help function
|
|
// PSTR is an AVR macro to read strings from flash memory
|
|
// printf_P is a version of print_f that reads from flash memory
|
|
static int8_t main_menu_help(uint8_t argc, const Menu::arg *argv)
|
|
{
|
|
cliSerial->printf_P(PSTR("Commands:\n"
|
|
" logs log readback/setup mode\n"
|
|
" setup setup mode\n"
|
|
" test test mode\n"
|
|
"\n"
|
|
"Move the slide switch and reset to FLY.\n"
|
|
"\n"));
|
|
return(0);
|
|
}
|
|
|
|
// Command/function table for the top-level menu.
|
|
static const struct Menu::command main_menu_commands[] PROGMEM = {
|
|
// command function called
|
|
// ======= ===============
|
|
#if LITE == DISABLED
|
|
{"logs", process_logs},
|
|
#endif
|
|
{"setup", setup_mode},
|
|
{"test", test_mode},
|
|
{"help", main_menu_help}
|
|
};
|
|
|
|
// Create the top-level menu object.
|
|
MENU(main_menu, THISFIRMWARE, main_menu_commands);
|
|
|
|
// the user wants the CLI. It never exits
|
|
static void run_cli(AP_HAL::UARTDriver *port)
|
|
{
|
|
// disable the failsafe code in the CLI
|
|
hal.scheduler->register_timer_failsafe(NULL,1);
|
|
|
|
// disable the mavlink delay callback
|
|
hal.scheduler->register_delay_callback(NULL, 5);
|
|
|
|
cliSerial = port;
|
|
Menu::set_port(port);
|
|
port->set_blocking_writes(true);
|
|
|
|
while (1) {
|
|
main_menu.run();
|
|
}
|
|
}
|
|
|
|
#endif // CLI_ENABLED
|
|
|
|
static void init_ardupilot()
|
|
{
|
|
#if USB_MUX_PIN > 0
|
|
// on the APM2 board we have a mux thet switches UART0 between
|
|
// USB and the board header. If the right ArduPPM firmware is
|
|
// installed we can detect if USB is connected using the
|
|
// USB_MUX_PIN
|
|
pinMode(USB_MUX_PIN, INPUT);
|
|
|
|
usb_connected = !digitalRead(USB_MUX_PIN);
|
|
if (!usb_connected) {
|
|
// USB is not connected, this means UART0 may be a Xbee, with
|
|
// its darned bricking problem. We can't write to it for at
|
|
// least one second after powering up. Simplest solution for
|
|
// now is to delay for 1 second. Something more elegant may be
|
|
// added later
|
|
delay(1000);
|
|
}
|
|
#endif
|
|
|
|
// Console serial port
|
|
//
|
|
// The console port buffers are defined to be sufficiently large to support
|
|
// the console's use as a logging device, optionally as the GPS port when
|
|
// GPS_PROTOCOL_IMU is selected, and as the telemetry port.
|
|
//
|
|
// XXX This could be optimised to reduce the buffer sizes in the cases
|
|
// where they are not otherwise required.
|
|
//
|
|
hal.uartA->begin(SERIAL0_BAUD, 128, 128);
|
|
|
|
// GPS serial port.
|
|
//
|
|
// XXX currently the EM406 (SiRF receiver) is nominally configured
|
|
// at 57600, however it's not been supported to date. We should
|
|
// probably standardise on 38400.
|
|
//
|
|
// XXX the 128 byte receive buffer may be too small for NMEA, depending
|
|
// on the message set configured.
|
|
//
|
|
// standard gps running
|
|
hal.uartB->begin(115200, 128, 16);
|
|
|
|
cliSerial->printf_P(PSTR("\n\nInit " THISFIRMWARE
|
|
"\n\nFree RAM: %u\n"),
|
|
memcheck_available_memory());
|
|
|
|
//
|
|
// Check the EEPROM format version before loading any parameters from EEPROM.
|
|
//
|
|
|
|
load_parameters();
|
|
|
|
// after parameter load setup correct baud rate on uartA
|
|
hal.uartA->begin(map_baudrate(g.serial0_baud, SERIAL0_BAUD));
|
|
|
|
// keep a record of how many resets have happened. This can be
|
|
// used to detect in-flight resets
|
|
g.num_resets.set_and_save(g.num_resets+1);
|
|
|
|
// init the GCS
|
|
gcs0.init(hal.uartA);
|
|
|
|
// Register mavlink_delay_cb, which will run anytime you have
|
|
// more than 5ms remaining in your call to hal.scheduler->delay
|
|
hal.scheduler->register_delay_callback(mavlink_delay_cb, 5);
|
|
|
|
#if USB_MUX_PIN > 0
|
|
if (!usb_connected) {
|
|
// we are not connected via USB, re-init UART0 with right
|
|
// baud rate
|
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD));
|
|
}
|
|
#else
|
|
// we have a 2nd serial port for telemetry
|
|
hal.uartC->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128);
|
|
gcs3.init(hal.uartC);
|
|
#endif
|
|
|
|
mavlink_system.sysid = g.sysid_this_mav;
|
|
|
|
#if LITE == DISABLED
|
|
#if LOGGING_ENABLED == ENABLED
|
|
DataFlash.Init(); // DataFlash log initialization
|
|
if (!DataFlash.CardInserted()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("No dataflash card inserted"));
|
|
g.log_bitmask.set(0);
|
|
} else if (DataFlash.NeedErase()) {
|
|
gcs_send_text_P(SEVERITY_LOW, PSTR("ERASING LOGS"));
|
|
do_erase_logs();
|
|
}
|
|
if (g.log_bitmask != 0) {
|
|
DataFlash.start_new_log();
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
|
|
#if CONFIG_ADC == ENABLED
|
|
adc.Init(); // APM ADC library initialization
|
|
#endif
|
|
|
|
#if LITE == DISABLED
|
|
if (g.compass_enabled==true) {
|
|
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft
|
|
if (!compass.init()|| !compass.read()) {
|
|
cliSerial->println_P(PSTR("Compass initialisation failed!"));
|
|
g.compass_enabled = false;
|
|
} else {
|
|
ahrs.set_compass(&compass);
|
|
//compass.get_offsets(); // load offsets to account for airframe magnetic interference
|
|
}
|
|
}
|
|
#else
|
|
I2c.begin();
|
|
I2c.timeOut(20);
|
|
|
|
// I2c.setSpeed(true);
|
|
|
|
if (!compass.init()) {
|
|
cliSerial->println("compass initialisation failed!");
|
|
while (1) ;
|
|
}
|
|
|
|
compass.set_orientation(MAG_ORIENTATION); // set compass's orientation on aircraft.
|
|
compass.set_offsets(0,0,0); // set offsets to account for surrounding interference
|
|
compass.set_declination(ToRad(0.0)); // set local difference between magnetic north and true north
|
|
|
|
cliSerial->print("Compass auto-detected as: ");
|
|
switch( compass.product_id ) {
|
|
case AP_COMPASS_TYPE_HIL:
|
|
cliSerial->println("HIL");
|
|
break;
|
|
case AP_COMPASS_TYPE_HMC5843:
|
|
cliSerial->println("HMC5843");
|
|
break;
|
|
case AP_COMPASS_TYPE_HMC5883L:
|
|
cliSerial->println("HMC5883L");
|
|
break;
|
|
default:
|
|
cliSerial->println("unknown");
|
|
break;
|
|
}
|
|
|
|
delay(3000);
|
|
|
|
#endif
|
|
// initialise sonar
|
|
#if CONFIG_SONAR == ENABLED
|
|
init_sonar();
|
|
#endif
|
|
|
|
#endif
|
|
// Do GPS init
|
|
g_gps = &g_gps_driver;
|
|
// GPS initialisation
|
|
g_gps->init(hal.uartB, GPS::GPS_ENGINE_AUTOMOTIVE);
|
|
|
|
//mavlink_system.sysid = MAV_SYSTEM_ID; // Using g.sysid_this_mav
|
|
mavlink_system.compid = 1; //MAV_COMP_ID_IMU; // We do not check for comp id
|
|
mavlink_system.type = MAV_TYPE_GROUND_ROVER;
|
|
|
|
rc_override_active = hal.rcin->set_overrides(rc_override, 8);
|
|
|
|
init_rc_in(); // sets up rc channels from radio
|
|
init_rc_out(); // sets up the timer libs
|
|
|
|
pinMode(C_LED_PIN, OUTPUT); // GPS status LED
|
|
pinMode(A_LED_PIN, OUTPUT); // GPS status LED
|
|
pinMode(B_LED_PIN, OUTPUT); // GPS status LED
|
|
#if SLIDE_SWITCH_PIN > 0
|
|
pinMode(SLIDE_SWITCH_PIN, INPUT); // To enter interactive mode
|
|
#endif
|
|
#if CONFIG_PUSHBUTTON == ENABLED
|
|
pinMode(PUSHBUTTON_PIN, INPUT); // unused
|
|
#endif
|
|
#if CONFIG_RELAY == ENABLED
|
|
relay.init();
|
|
#endif
|
|
|
|
/*
|
|
setup the 'main loop is dead' check. Note that this relies on
|
|
the RC library being initialised.
|
|
*/
|
|
hal.scheduler->register_timer_failsafe(failsafe_check, 1000);
|
|
|
|
// If the switch is in 'menu' mode, run the main menu.
|
|
//
|
|
// Since we can't be sure that the setup or test mode won't leave
|
|
// the system in an odd state, we don't let the user exit the top
|
|
// menu; they must reset in order to fly.
|
|
//
|
|
#if CLI_ENABLED == ENABLED && CLI_SLIDER_ENABLED == ENABLED
|
|
if (digitalRead(SLIDE_SWITCH_PIN) == 0) {
|
|
digitalWrite(A_LED_PIN,LED_ON); // turn on setup-mode LED
|
|
cliSerial->printf_P(PSTR("\n"
|
|
"Entering interactive setup mode...\n"
|
|
"\n"
|
|
"If using the Arduino Serial Monitor, ensure Line Ending is set to Carriage Return.\n"
|
|
"Type 'help' to list commands, 'exit' to leave a submenu.\n"
|
|
"Visit the 'setup' menu for first-time configuration.\n"));
|
|
cliSerial->println_P(PSTR("\nMove the slide switch and reset to FLY.\n"));
|
|
run_cli(&cliSerial);
|
|
}
|
|
#else
|
|
const prog_char_t *msg = PSTR("\nPress ENTER 3 times to start interactive setup\n");
|
|
cliSerial->println_P(msg);
|
|
#if USB_MUX_PIN == 0
|
|
hal.uartC->println_P(msg);
|
|
#endif
|
|
#endif // CLI_ENABLED
|
|
|
|
startup_ground();
|
|
|
|
#if LITE == DISABLED
|
|
if (g.log_bitmask & MASK_LOG_CMD)
|
|
Log_Write_Startup(TYPE_GROUNDSTART_MSG);
|
|
#endif
|
|
|
|
set_mode(MANUAL);
|
|
|
|
// set the correct flight mode
|
|
// ---------------------------
|
|
reset_control_switch();
|
|
}
|
|
|
|
//********************************************************************************
|
|
//This function does all the calibrations, etc. that we need during a ground start
|
|
//********************************************************************************
|
|
static void startup_ground(void)
|
|
{
|
|
set_mode(INITIALISING);
|
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> GROUND START"));
|
|
|
|
#if(GROUND_START_DELAY > 0)
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("<startup_ground> With Delay"));
|
|
delay(GROUND_START_DELAY * 1000);
|
|
#endif
|
|
|
|
// Makes the servos wiggle
|
|
// step 1 = 1 wiggle
|
|
// -----------------------
|
|
demo_servos(1);
|
|
|
|
#if LITE == DISABLED
|
|
//IMU ground start
|
|
//------------------------
|
|
//
|
|
|
|
startup_INS_ground(false);
|
|
#endif
|
|
|
|
// read the radio to set trims
|
|
// ---------------------------
|
|
trim_radio();
|
|
|
|
// initialize commands
|
|
// -------------------
|
|
init_commands();
|
|
|
|
// Makes the servos wiggle - 3 times signals ready to fly
|
|
// -----------------------
|
|
demo_servos(3);
|
|
|
|
gcs_send_text_P(SEVERITY_LOW,PSTR("\n\n Ready to drive."));
|
|
}
|
|
|
|
static void set_mode(enum mode mode)
|
|
{
|
|
|
|
if(control_mode == mode){
|
|
// don't switch modes if we are already in the correct mode.
|
|
return;
|
|
}
|
|
control_mode = mode;
|
|
throttle_last = 0;
|
|
throttle = 500;
|
|
|
|
switch(control_mode)
|
|
{
|
|
case MANUAL:
|
|
case LEARNING:
|
|
break;
|
|
|
|
case AUTO:
|
|
rtl_complete = false;
|
|
restart_nav();
|
|
break;
|
|
|
|
case RTL:
|
|
do_RTL();
|
|
break;
|
|
|
|
default:
|
|
do_RTL();
|
|
break;
|
|
}
|
|
|
|
#if LITE == DISABLED
|
|
if (g.log_bitmask & MASK_LOG_MODE)
|
|
Log_Write_Mode(control_mode);
|
|
#endif
|
|
|
|
}
|
|
|
|
static void check_long_failsafe()
|
|
{
|
|
// only act on changes
|
|
// -------------------
|
|
if(failsafe != FAILSAFE_LONG && failsafe != FAILSAFE_GCS){
|
|
if(rc_override_active && millis() - rc_override_fs_timer > FAILSAFE_LONG_TIME) {
|
|
failsafe_long_on_event(FAILSAFE_LONG);
|
|
}
|
|
if(! rc_override_active && failsafe == FAILSAFE_SHORT && millis() - ch3_failsafe_timer > FAILSAFE_LONG_TIME) {
|
|
failsafe_long_on_event(FAILSAFE_LONG);
|
|
}
|
|
if (g.fs_gcs_enabled && millis() - rc_override_fs_timer > FAILSAFE_LONG_TIME) {
|
|
failsafe_long_on_event(FAILSAFE_GCS);
|
|
}
|
|
} else {
|
|
// We do not change state but allow for user to change mode
|
|
if(failsafe == FAILSAFE_GCS && millis() - rc_override_fs_timer < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE;
|
|
if(failsafe == FAILSAFE_LONG && rc_override_active && millis() - rc_override_fs_timer < FAILSAFE_SHORT_TIME) failsafe = FAILSAFE_NONE;
|
|
if(failsafe == FAILSAFE_LONG && !rc_override_active && !ch3_failsafe) failsafe = FAILSAFE_NONE;
|
|
}
|
|
}
|
|
|
|
#if LITE == DISABLED
|
|
static void startup_INS_ground(bool force_accel_level)
|
|
{
|
|
#if HIL_MODE != HIL_MODE_ATTITUDE
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Warming up ADC..."));
|
|
mavlink_delay(500);
|
|
|
|
// Makes the servos wiggle twice - about to begin INS calibration - HOLD LEVEL AND STILL!!
|
|
// -----------------------
|
|
demo_servos(2);
|
|
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("Beginning INS calibration; do not move plane"));
|
|
mavlink_delay(1000);
|
|
|
|
ahrs.init();
|
|
ahrs.set_fly_forward(true);
|
|
ins.init(AP_InertialSensor::COLD_START,
|
|
ins_sample_rate,
|
|
flash_leds);
|
|
if (force_accel_level) {
|
|
// when MANUAL_LEVEL is set to 1 we don't do accelerometer
|
|
// levelling on each boot, and instead rely on the user to do
|
|
// it once via the ground station
|
|
ins.init_accel(flash_leds);
|
|
ahrs.set_trim(Vector3f(0, 0, 0));
|
|
}
|
|
ahrs.reset();
|
|
|
|
#endif // HIL_MODE_ATTITUDE
|
|
|
|
digitalWrite(B_LED_PIN, LED_ON); // Set LED B high to indicate INS ready
|
|
digitalWrite(A_LED_PIN, LED_OFF);
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
}
|
|
#endif
|
|
|
|
static void update_GPS_light(void)
|
|
{
|
|
// GPS LED on if we have a fix or Blink GPS LED if we are receiving data
|
|
// ---------------------------------------------------------------------
|
|
switch (g_gps->status()) {
|
|
case(2):
|
|
digitalWrite(C_LED_PIN, LED_ON); //Turn LED C on when gps has valid fix.
|
|
break;
|
|
|
|
case(1):
|
|
if (g_gps->valid_read == true){
|
|
GPS_light = !GPS_light; // Toggle light on and off to indicate gps messages being received, but no GPS fix lock
|
|
if (GPS_light){
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
} else {
|
|
digitalWrite(C_LED_PIN, LED_ON);
|
|
}
|
|
g_gps->valid_read = false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
digitalWrite(C_LED_PIN, LED_OFF);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void resetPerfData(void) {
|
|
mainLoop_count = 0;
|
|
G_Dt_max = 0;
|
|
ahrs.renorm_range_count = 0;
|
|
ahrs.renorm_blowup_count = 0;
|
|
gps_fix_count = 0;
|
|
pmTest1 = 0;
|
|
perf_mon_timer = millis();
|
|
}
|
|
|
|
|
|
/*
|
|
map from a 8 bit EEPROM baud rate to a real baud rate
|
|
*/
|
|
static uint32_t map_baudrate(int8_t rate, uint32_t default_baud)
|
|
{
|
|
switch (rate) {
|
|
case 1: return 1200;
|
|
case 2: return 2400;
|
|
case 4: return 4800;
|
|
case 9: return 9600;
|
|
case 19: return 19200;
|
|
case 38: return 38400;
|
|
case 57: return 57600;
|
|
case 111: return 111100;
|
|
case 115: return 115200;
|
|
}
|
|
cliSerial->println_P(PSTR("Invalid SERIAL3_BAUD"));
|
|
return default_baud;
|
|
}
|
|
|
|
|
|
#if USB_MUX_PIN > 0
|
|
static void check_usb_mux(void)
|
|
{
|
|
bool usb_check = !digitalRead(USB_MUX_PIN);
|
|
if (usb_check == usb_connected) {
|
|
return;
|
|
}
|
|
|
|
// the user has switched to/from the telemetry port
|
|
usb_connected = usb_check;
|
|
if (usb_connected) {
|
|
hal.uartA->begin(SERIAL0_BAUD, 128, 128);
|
|
} else {
|
|
hal.uartA->begin(map_baudrate(g.serial3_baud, SERIAL3_BAUD), 128, 128);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
called by gyro/accel init to flash LEDs so user
|
|
has some mesmerising lights to watch while waiting
|
|
*/
|
|
void flash_leds(bool on)
|
|
{
|
|
digitalWrite(A_LED_PIN, on?LED_OFF:LED_ON);
|
|
digitalWrite(C_LED_PIN, on?LED_ON:LED_OFF);
|
|
}
|
|
|
|
/*
|
|
* Read Vcc vs 1.1v internal reference
|
|
*/
|
|
uint16_t board_voltage(void)
|
|
{
|
|
return vcc_pin->read_latest();
|
|
}
|
|
|
|
static void
|
|
print_mode(uint8_t mode)
|
|
{
|
|
switch (mode) {
|
|
case MANUAL:
|
|
cliSerial->println_P(PSTR("Manual"));
|
|
break;
|
|
case LEARNING:
|
|
cliSerial->println_P(PSTR("Learning"));
|
|
break;
|
|
case AUTO:
|
|
cliSerial->println_P(PSTR("AUTO"));
|
|
break;
|
|
case RTL:
|
|
cliSerial->println_P(PSTR("RTL"));
|
|
break;
|
|
default:
|
|
cliSerial->println_P(PSTR("---"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
force a software reset of the APM
|
|
*/
|
|
static void reboot_apm(void)
|
|
{
|
|
hal.scheduler->reboot();
|
|
while (1);
|
|
}
|